精英家教网 > 高中数学 > 题目详情

【题目】已知直角梯形 分别是边上的点沿折起并连接成如图的多面体折后

(Ⅰ)求证:

(Ⅱ)若折后直线与平面所成角的正弦值是求证平面平面

【答案】(Ⅰ)见解析;(Ⅱ)见解析.

【解析】试题分析:(Ⅰ)由 可得平面,从而,结合,根据线面垂直的判定定理可得; 平面,所以;(Ⅱ)作,连,由(Ⅰ)知,即与平面所成角,设 ,而直线与平面所成角的正弦值是,即,以 为轴建立坐标系,取的中点,先证明平面的法向量是,再利用向量垂直数量积为零可得平面的法向量,根据空间向量夹角的余弦公式可得结果.

试题解析:(Ⅰ)∵

平面

平面

(Ⅱ)由(Ⅰ)知,可如图建立空间直角坐标系,

由(Ⅰ)知

与平面所成角

而直线与平面所成角的正弦值是

(或:平面的法向量是

).

易知平面平面的中点平面

则平面的法向量是

(或另法求出平面的法向量是),

再求出平面的法向量

设二面角

∴平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:

项目

生产成本

检验费/次

调试费

出厂价

金额(元)

1000

100

200

3000

(Ⅰ)求每台仪器能出厂的概率;

(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);

(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为,直线过点且依次交抛物线及圆四点,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点是椭圆的顶点 为椭圆的左焦点且椭圆经过点.

1)求椭圆的方程

2)过椭圆的右顶点作斜率为的直线交椭圆于另一点连结并延长交椭圆于点的面积取得最大值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运动会时,高一某班共有28名同学参加比赛,每人至多报两个项目.15人参加游泳,8人参加田径,14人参加球类.同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,则只参加一个项目的有______人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个极值,其中,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 为等边三角形,平面平面 的中点

)求证:

)求二面角的余弦值

平面,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,上顶点为为坐标原点,椭圆的离心率的面积为.

(1)求椭圆的方程;

(2)设线段的中点为,经过的直线与椭圆交于两点, ,若点关于轴的对称点在直线上,求直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,平面平面,且

是等边三角形, .

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案