科目: 来源: 题型:
【题目】对于函数和,若存在区间,使在区间上恒成立,则称区间是函数和的“公共邻域”.设函数的反函数为,函数的图像与函数的图像关于点对称.
(1)求函数和的解析式;
(2)若,求函数的定义域;
(3)是否存在实数,使得区间是和的“公共邻域”,若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】学生李明用手机加了一个有关高中数学学习的微信群,群里面许多数学爱好者经常发一些有关高中数学学习的心得和经验,但是,这些心得和经验的正确性无法保证,下面是李明搜集到的有关函数的一些结论:
(1)若函数有反函数,则其反函数可表示为;
(2)函数在其定义域内的最大值为,最小值为,则其值域为;
(3)定义在上的函数,若对任意的实数,等式均成立,则函数一定是奇函数;
(4)定义在上的函数,若对任意的实数都有,则函数一定没有反函数.
李明的同学们对以上四个结论有以下不同判断,其中判断正确的是( )
A.都是错误的B.只有一个是正确的
C.两对两错D.只有一个是错误的
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数.
(1)已知的解集为,求实数的值;
(2)已知,设、是关于的方程的两根,且,求实数的值;
(3)已知满足,且关于的方程的两实数根分别在区间内,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】为保护环境,某单位采用新工艺,把二氧化碳转化为一种可利用的化工产品。已知该单位每月的处理量最多不超过300吨,月处理成本(元)与月处理量(吨)之间的函数关系式可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为300元。
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?
查看答案和解析>>
科目: 来源: 题型:
【题目】设是实数,,
(1)若函数为奇函数,求的值;
(2)试用定义证明:对于任意,在上为单调递增函数;
(3)若函数为奇函数,且不等式对任意恒成立,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时,的值为2千克/年;当时,是的一次函数;当时,因缺氧等原因,的值为0千克/年.
(1)当时,求关于的函数表达式.
(2)当养殖密度为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图放置的边长为2的正三角形ABC沿x轴滚动,记滚动过程中顶点A的横、纵坐标分别为和,且是在映射作用下的象,则下列说法中:
① 映射的值域是;
② 映射不是一个函数;
③ 映射是函数,且是偶函数;
④ 映射是函数,且单增区间为,
其中正确说法的序号是___________.
说明:“正三角形ABC沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点B为中心顺时针旋转,当顶点C落在x轴上时,再以顶点C为中心顺时针旋转,如此继续.类似地,正三角形ABC可以沿x轴负方向滚动.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com