相关习题
 0  261147  261155  261161  261165  261171  261173  261177  261183  261185  261191  261197  261201  261203  261207  261213  261215  261221  261225  261227  261231  261233  261237  261239  261241  261242  261243  261245  261246  261247  261249  261251  261255  261257  261261  261263  261267  261273  261275  261281  261285  261287  261291  261297  261303  261305  261311  261315  261317  261323  261327  261333  261341  266669 

科目: 来源: 题型:

【题目】在直角坐标系中,点到两点的距离之和等于,设点的轨迹为

(1)求曲线的方程;

(2)过点作直线与曲线交于点,以线段为直径的圆能否过坐标原点,若能,求出直线的方程,若不能请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】2017年5月,“一带一路”沿线的20国青年评选出了中国“新四大发明”:高铁、支付宝、共享单车和网购.2017年末,“支付宝大行动”用发红包的方法刺激支付宝的使用.某商家统计前5名顾客扫描红包所得金额分别为5.5元,2.1元,3.3元,5.9元,4.7元,商家从这5名顾客中随机抽取3人赠送台历.

(1)求获得台历是三人中至少有一人的红包超过5元的概率;

(2)统计一周内每天使用支付宝付款的人数与商家每天的净利润元,得到7组数据,如表所示,并作出了散点图.

(i)直接根据散点图判断,哪一个适合作为每天的净利润的回归方程类型.(的值取整数)

(ii)根据(i)的判断,建立关于的回归方程,并估计使用支付宝付款的人数增加到35时,商家当天的净利润.

参考数据:

22.86

194.29

268.86

3484.29

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目: 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中把三角形的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位.现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田.若在邪田内随机种植一株茶树,求该株茶树恰好种在圭田内的概率为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且满足

(1)求动点的轨迹的方程;

(2)过点作直线与轨迹交于两点,为直线上一点,且满足,若的面积为,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面. 

(1)证明:平面平面

(2)若为棱的中点,,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目: 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列,期望和方差.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(1)讨论的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的图象上存在关于轴对称的点,则的取值范围是__________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=,下列结论中错误的是

A. , f()=0

B. 函数y=f(x)的图像是中心对称图形

C. f(x)的极小值点,则f(x)在区间(-∞,)单调递减

D. fx)的极值点,则()=0

查看答案和解析>>

同步练习册答案