科目: 来源: 题型:
【题目】已知函数f(x)=log4(ax2+2x+3).
(1)若f(x)定义域为R,求a的取值范围;
(2)若f(1)=1,求f(x)的单调区间;
(3)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C1:y=cos x,C2:y=sin (2x+
),则下面结论正确的是( )
A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线C2
B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移
个单位长度,得到曲线C2
C. 把C1上各点的横坐标缩短到原来的
倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线C2
D. 把C1上各点的横坐标缩短到原来的
倍,纵坐标不变,再把得到的曲线向左平移
个单位长度,得到曲线C2
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线M上的动点
到定点
距离是它到定直线
距离的一半.
(1)求曲线M的方程;
(2)设过点
且倾斜角为
的直线与曲线M相交与A、B两点,在定直线l上是否存在点C,使得
,若存在,求出点C的坐标,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
(
)的左右顶点分别为
,
,点
在椭圆
上,且
的面积为
.
(1)求椭圆
的方程;
(2)设直线
不经过点
且与椭圆
交于
,
两点,若直线
与直线
的斜率之积为
,证明:直线
过顶点.
查看答案和解析>>
科目: 来源: 题型:
【题目】经观测,某公路段在某时段内的车流量
(千辆/小时)与汽车的平均速度
(千米/小时)之间有函数关系:
.
(1)在该时段内,当汽车的平均速度
为多少时车流量
最大?最大车流量为多少?(精确到0.01)
(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,对于任意的
,都有
, 当
时,
,且
.
( I ) 求
的值;
(II) 当
时,求函数
的最大值和最小值;
(III) 设函数
,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】一 厂家在一批产品出厂前要对其进行质量检验,检验方案是: 先从这批产品中任取3件进行检验,这3件产品中优质品的件数记为
.如果
,再从这批产品中任取3件进行检验,若都为优质品,则这批产品通过检验;如果
,再从这批产品中任取4件进行检验,若都为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为
,且各件产品是否为优质品相互独立.
(1) 求这批产品通过检验的概率;
(2) 已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为
(单位: 元),求
的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某桶装水经营部每天的房租,人员工资等固定成本为200元,每桶水的进价是5元,销售价
(元)与日均销售量
(桶)的关系如下表,为了收费方便,经营部将销售价定为整数,并保持经营部每天盈利.
| 6 | 7 | 8 | 9 | 10 | 11 | 12 | … |
| 480 | 440 | 400 | 360 | 320 | 280 | 240 | … |
(1)写出
的值,并解释其实际意义;
(2)求
表达式,并求其定义域;
(3)求经营部利润表达式
,请问经营部怎样定价才能获得最大利润?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,侧面
底面
,底面
为直角梯形,其中
,
,
,
,
,
,点
在棱
上且
,点
为棱
的中点.
在棱
上且
,点
位棱
的中点.
(1)证明:平面
平面
;
(2)求二面角
的余弦值的大小.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com