科目: 来源: 题型:
【题目】已知函数
,其中
.
(1)若函数
在
处取得极值,求实数
的值;
(2)在(1)的结论下,若关于
的不等式
,当
时恒成立,求
的值;
(3)令
,若关于
的方程
在
内至少有两个解,求出实数
的取值范围。
查看答案和解析>>
科目: 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了
月
日至
月
日的每天昼夜温差与实验室每天每
颗种子中的发芽数,得到如下资料:
日期 |
|
|
|
|
|
温差 |
|
|
|
|
|
发芽数 |
|
|
|
|
|
该农科所确定的研究方案是:先从这五组数据中选取
组,用剩下的
组数据求线性回归方程,再对被选取的
组数据进行检验.
(1)求选取的
组数据恰好是不相邻
天数据的概率;
(2)若选取的是
月
日与
月
日的两组数据,请根据
月
日至
月
日的数据,求出
关于
的线性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过
颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解共享单车在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了
人进行分析,得到如下列联表(单位:人).
经常使用 | 偶尔使用或不使用 | 合计 | |
|
|
|
|
|
|
|
|
合计 |
|
|
|
(1)根据以上数据,能否在犯错误的概率不超过
的前提下认为
市使用共享单车的情况与年龄有关;
(2)(i)现从所选取的
岁以上的网友中,采用分层抽样的方法选取
人,再从这
人中随机选出
人赠送优惠券,求选出的
人中至少有
人经常使用共享单车的概率;
(ii)将频率视为概率,从
市所有参与调查的网友中随机选取
人赠送礼品,记其中经常使用共享单车的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目: 来源: 题型:
【题目】在多面体
中,底面
是梯形,四边形
是正方形,
,
,面
面
,
.
.
(1)求证:平面
平面
;
(2)设
为线段
上一点,
,试问在线段
上是否存在一点
,使得
平面
,若存在,试指出点
的位置;若不存在,说明理由?
(3)在(2)的条件下,求点
到平面
的距离.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某县共有90间农村淘宝服务站,随机抽取5间,统计元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.
![]()
(1)根据茎叶图计算样本均值;
(2)若网购金额(单位:万元)不小于18的服务站定义为优秀服务站,其余为非优秀服务站.根据茎叶图推断90间服务站中有几间优秀服务站?
(3)从随机抽取的5间服务站中再任取2间作网购商品的调查,求恰有1间是优秀服务站的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线
的右顶点到其一条渐近线的距离等于
,抛物线
的焦点与双曲线
的右焦点重合,则抛物线
上的动点
到直线
和
距离之和的最小值为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数
,如果存在实数
使得
,那么称
为
的生成函数.
(1)函数
,是否为
的生成函数?说明理由;
(2)设
,
,当
时生成函数
,求
的对称中心(不必证明);
(3)设
,
,取
,
,生成函数
,若函数
的最小值是5,求实数
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】以直角坐标系的原点
为极点,以
轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线
的参数方程为
(
为参数,
),曲线
的极坐标方程为
.
(1)若
,求直线
的普通方程和曲线
的直角坐标方程;
(2)设直线
与曲线
相交于
,
两点,当
变化时,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线C的参数方程为
(
为参数),以坐标原点为极点,
轴非负半轴为极轴建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)设点M的极坐标为
,过点M的直线
与曲线C交于A、B两点,若
,求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0是f(x)的一个不动点,已知f(x)=x2+ax+4在[1,3]恒有两个不同的不动点,则实数a的取值范围______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com