精英家教网 > 高中数学 > 题目详情

【题目】已知函数其中.

(1)若函数处取得极值,求实数的值;

(2)(1)的结论下,若关于的不等式时恒成立的值

(3)令若关于的方程内至少有两个解,求出实数的取值范围。

【答案】(1) ;(2);(3) 实数的范围是.

【解析】

分析:(1)根据求得;(2)由题意结合分离参数可得恒成立构造函数,利用导数可得,故得,又,所以得到

(3)由题意,令,构造函数,则由题意得可得方程在区间上只少有两个解.然后分类讨论可得实数的范围是

详解:(1)∵

又函数处取得极值,

,解得

经验证知满足条件,

(2)当时,

由题意得恒成立

恒成立

上单调递增,

,

(3)由题意得

,设

则方程在区间上只少有两个解,

∴方程在区间上有解,

由于

①当时,,函数上是增函数,且

∴方程在区间上无解;

②当时,,同①可得方程无解;

③当时,函数上递增,在上递减,且

要使方程在区间上有解,则,即

④当时,函数上递增,在上递减,且

此时方程内必有解;

⑤当时,函数上递增,在上递减,且

∴方程在区间内无解.

综上可得实数的范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为纪念重庆黑山谷晋升国家5A级景区五周年,特发行黑山谷纪念邮票,从2017年11月1日起开始上市.通过市场调查,得到该纪念邮票在一周内每1张的市场价y(单位:元)与上市时间x(单位:天)的数据如下:

上市时间x天

1

2

6

市场价y元

5

2

10

(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;

(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:

组别

2

3

5

15

18

12

0

5

10

10

7

13

(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?

(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.

①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;

②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:

红包金额(单位:元)

10

20

概率

现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,如果对于的每一个含有个元素的子集中必有个元素的和等于,称正整数为集合的一个相关数

1)当时,判断是否为集合相关数,说明理由;

2)若为集合相关数,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体EF-ABCD中,四边形CDEF是正方形,四边形ABCD为直角梯形,ABCDADDC,△ACB是腰长为2的等腰直角三角形,平面CDEF⊥平面ABCD

(1)求证:BCAF

(2)求几何体EF-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(Ⅰ)若是函数的一个极值点,求实数的值及内的最小值;

(Ⅱ)当时,求证:函数存在唯一的极小值点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

(Ⅰ)当时,讨论函数的单调性;

(Ⅱ)若函数仅在处有极值,求的取值范围;

(Ⅲ)若对于任意的,不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

极坐标系与直角坐标系有相同的长度单位,以坐标原点为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线与曲线分别交异于极点的四点.

(1)若曲线关于曲线对称,求的值,并把曲线化成直角坐标方程;

(2)求的值.

查看答案和解析>>

同步练习册答案