精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线C的参数方程为为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.

(1)写出曲线C的极坐标方程;

(2)设点M的极坐标为,过点M的直线与曲线C交于A、B两点,若,求

【答案】(1);(2)3.

【解析】

试题(1)由曲线C的参数方程先求出曲线C的直角坐标方程,由此能求出曲线C的极坐标方程.
(2)先求出直线l的参数方程,与曲线C的直角坐标方程联立,得t2+2(cosθ-sinθ)t-2=0,由此能求出AB的弦长.

试题解析:

(1)由为参数),得,即,所以 .

(2)M的极坐标为M的直角坐标为(1, 1)

设直线的参数方程是为参数)

曲线的直角坐标方程是

联立方程可得,设是方程的两根,则

,所以,则

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了落实国务院“提速降费”的要求,某市移动公司欲下调移动用户消费资费.已知该公司共有移动用户10万人,人均月消费50元.经测算,若人均月消费下降x%,则用户人数会增加万人.

(1)若要保证该公司月总收入不减少,试求x的取值范围;

(2)为了布局“5G网络”,该公司拟定投入资金进行5G网络基站建设,投入资金方式为每位用户月消费中固定划出2元进入基站建设资金,若使该公司总盈利最大,试求x的值.

(总盈利资金=总收入资金-总投入资金)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:经过点,离心率为.

(1)求椭圆的方程;

(2)过点的直线交椭圆于两点,为椭圆的左焦点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某机械厂要将长,宽的长方形铁皮进行裁剪.已知点的中点,点在边上,裁剪时先将四边形沿直线翻折到处(点分别落在直线下方点处,交边于点,再沿直线裁剪.

1)当时,试判断四边形的形状,并求其面积;

2)若使裁剪得到的四边形面积最大,请给出裁剪方案,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1)现按分层抽样从质量为的芒果中随机抽取个,再从这个中随机抽取个,记随机变量表示质量在内的芒果个数,求的分布列及数学期望.

(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所以芒果以/千克收购;

B:对质量低于克的芒果以/个收购,高于或等于克的以/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体底面是梯形四边形是正方形..

(1)求证平面平面

(2)为线段上一点试问在线段上是否存在一点使得平面,若存在试指出点的位置若不存在说明理由?

(3)(2)的条件下求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医学院欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1到6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到数据资料见下表:

该院确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

(Ⅰ)求选取的2组数据恰好是不相邻的两个月的概率;

(Ⅱ)已知选取的是1月与6月的两组数据.

(1)请根据2到5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?

(参考公式和数据:

)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分

布直方图:

(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;

(2)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次.规定:这2次成绩均来自到篮筐中心的水平距离为4到5米的这一组,记 1分,否则记0分.求该运动员得1分的概率.

查看答案和解析>>

同步练习册答案