科目: 来源: 题型:
【题目】某学校高二年级举办了一次数学史知识竞赛活动,共有
名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为
分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
![]()
(1)填出频率分布表中的空格;
(2)为鼓励更多的学生了解“数学史”知识,成绩不低于
分的同学能获奖,请估计在参加的
名学生中大概有多少名学生获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的
的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。
(1)分别写出两类产品的收益与投资额的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆
中心在原点,焦点在
轴上,
、
分别为上、下焦点,椭圆的离心率为
,
为椭圆上一点且
.
(1)若
的面积为
,求椭圆
的标准方程;
(2)若
的延长线与椭圆
另一交点为
,以
为直径的圆过点
,
为椭圆上动点,求
的范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某同学在研究函数f(x)=
(x∈R)时,分别给出下面几个结论:
①等式f(-x)=-f(x)在x∈R时恒成立;
②函数f(x)的值域为(-1,1);
③若x1≠x2,则一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三个根.
其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)
查看答案和解析>>
科目: 来源: 题型:
【题目】双曲线
的左、右焦点分别为
、
,直线
过
且与双曲线交于
、
两点.
(1)若
的倾斜角为
,
,
是等腰直角三角形,求双曲线的标准方程;
(2)
,
,若
的斜率存在,且
,求
的斜率;
(3)证明:点
到已知双曲线的两条渐近线的距离的乘积为定值
是该点在已知双曲线上的必要非充分条件.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,当
时,
,现已画出函数在y轴左侧的图象,如图所示,请根据图象.
![]()
(1)将函数
的图象补充完整,并写出函数
的递增区间;
(2)写出函数
的解析式;
(3)若函数
,求函数
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂家为了了解某新产品使用者的年龄情况,现随机调査100 位使用者的年龄整理后画出的频率分布直方图如图所示.
![]()
(1)求100名使用者中各年龄组的人数,并利用所给的频率分布直方图估计所有使用者的平均年龄;
(2)若已从年龄在
的使用者中利用分层抽样选取了6人,再从这6人中选出2人,求这2人在不同的年龄组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱柱
中,
平面
,
,
,
,
为棱
上一动点,过直线
的平面分别与棱
,
交于点
,
,则下列结论正确的是__________.
![]()
①对于任意的点
,都有![]()
②对于任意的点
,四边形
不可能为平行四边形
③存在点
,使得
为等腰直角三角形
④存在点
,使得直线
平面![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】小赵和小王约定在早上
至
之间到某公交站搭乘公交车去上学,已知在这段时间内,共有
班公交车到达该站,到站的时间分别为
,
,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】以平面直角坐标系的原点为极点,
轴的正半轴为极轴,建立极坐标系,已知直线
的参数方程是
(m>0,t为参数),曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)若直线
与
轴交于点
,与曲线
交于点
,且
,求实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com