相关习题
 0  261399  261407  261413  261417  261423  261425  261429  261435  261437  261443  261449  261453  261455  261459  261465  261467  261473  261477  261479  261483  261485  261489  261491  261493  261494  261495  261497  261498  261499  261501  261503  261507  261509  261513  261515  261519  261525  261527  261533  261537  261539  261543  261549  261555  261557  261563  261567  261569  261575  261579  261585  261593  266669 

科目: 来源: 题型:

【题目】甲将要参加某决赛,赛前四位同学对冠军得主进行竞猜,每人选择一名选手,已知选择甲的概率均为选择甲的概率均为,且四人同时选择甲的概率为,四人均末选择甲的概率为

(1)求的值;

(2)设四位同学中选择甲的人数为,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某次文艺晚会上共演出7个节目,其中2个歌曲,3个舞蹈,2个曲艺节目,求分别满足下列条件的节自编排方法有多少种?(用数字作答)

(1)一个歌曲节目开头,另个歌曲节目放在最后压台;

(2)2个歌曲节目相邻且2个曲艺节目不相邻.

查看答案和解析>>

科目: 来源: 题型:

【题目】 如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面

(Ⅰ)设分别为的中点,求证:平面

(Ⅱ)求证:平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,函数在点处与轴相切

(1)求的值,并求的单调区间;

(2)当时,,求实数的取值范围。

查看答案和解析>>

科目: 来源: 题型:

【题目】随着节能减排意识深入人心,共享单车在各大城市大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车.为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:

每周使用次数

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合计

10

8

7

11

14

50

(1)如果用户每周使用共享单车超过3次,那么认为其“喜欢骑行共享单车”.请完成下面的2×2列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关;

不喜欢骑行共享单车

喜欢骑行共享单车

合计

合计

(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,将频率视为概率,在我市所有的“骑行达人”中随机抽取4名,求抽取的这4名“骑车达人”中,既有男性又有女性的概率.

附表及公式:,其中

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),过原点的两条直线分别与曲线交于异于原点的两点,且,其中的倾斜角为.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求的极坐标方程;

(2)求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若函数有两个零点

(i)求满足条件的最小正整数的值.

(ii)求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,函数,其中实数

1)当时,恒成立,求实数的取值范围;

2)设,若不等式上有解,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且的面积为.

(1)求椭圆的标准方程;

(2)设斜率为的直线与以原点为圆心,半径为的圆交于两点,与椭圆交于两点,且,当取得最小值时,求直线的方程.

查看答案和解析>>

同步练习册答案