科目: 来源: 题型:
【题目】近期,济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用
表示活动推出的天数,
表示每天使用扫码支付的人次(单位:十人次),统计数据如表
所示:
![]()
根据以上数据,绘制了散点图.
![]()
(1)根据散点图判断,在推广期内,
与
(
均为大于零的常数)哪一个适宜作为扫码支付的人次
关于活动推出天数
的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表
中的数据,建立
关于
的回归方程,并预测活动推出第
天使用扫码支付的 人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下
![]()
车队为缓解周边居民出行压力,以
万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为
万元.已知该线路公交车票价为
元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受
折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有
的概率享受
折优惠,有
的概率享受
折优惠,有
的概率享受
折优惠.预计该车队每辆车每个月有
万人次乘车,根据给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要
年才能开始盈利,求
的值.
参考数据:
![]()
其中其中![]()
参考公式:
对于一组数据
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角梯形
中,
,
,
,
,
,点
在
上,且
,将
沿
折起,使得平面
平面
(如图),
为
中点.
![]()
(1)求证:
平面
;
(2)在线段
上是否存在点
,使得
平面
?若存在,求
的值,并加以证明;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱
中,底面ABC为正三角形,
底面ABC,
,点
在线段
上,平面
平面
.
![]()
(1)请指出点
的位置,并给出证明;
(2)若
,求
与平面ABE夹角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】若对任意实数
都有函数
的图象与直线
相切,则称函数
为“恒切函数”,设函数
,其中
.
(1)讨论函数
的单调性;
(2)已知函数
为“恒切函数”,
①求实数
的取值范围;
②当
取最大值时,若函数
也为“恒切函数”,求证:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
的三边长分别为
,
,
,M是AB边上的点,P是平面ABC外一点.给出下列四个命题:①若
平面ABC,则三棱锥
的四个面都是直角三角形;②若
平面ABC,且M是边AB的中点,则有
;③若
,
平面ABC,则
面积的最小值为
;④若
,P在平面ABC上的射影是
内切圆的圆心,则点P到平面ABC的距离为
.其中正确命题的序号是________.(把你认为正确命题的序号都填上)
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》是我国古代的数学名著,书中把三角形的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位.现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田.若在邪田内随机种植一株茶树,求该株茶树恰好种在圭田内的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
部分图象如图所示.
![]()
(1)求函数
的解析式及
的单调递增区间;
(2)把函数
图象上点的横坐标扩大到原来的2倍(纵坐标不变),再向左平移
个单位,得到函数
的图象,求关于x的方程
在
上所有的实数根之和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com