科目: 来源: 题型:
【题目】在直角坐标系xOy中,圆C的参数方程
(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρ(sinθ+
)=3
,射线OM:θ=
与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是________度,即________rad.如果大轮的转速为
(转/分),小轮的半径为10.5cm,那么小轮周上一点每1s转过的弧长是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】一袋中有大小相同的4个红球和2个白球,给出下列结论:
①从中任取3球,恰有一个白球的概率是
;
②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为
;
③现从中不放回的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为
;
④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为
.
其中所有正确结论的序号是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )
A.
种 B.
种 C.
种 D.
种
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
是偶函数.
(1)求
的值;
(2)若函数
的图像与
的图像有交点,求
的取值范围;
(3)若函数
,是否存在实数
使得
最小值为1,若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.
![]()
组别 | 分组 | 回答正确的人数 | 回答正确的人数占本组的概率 |
第1组 | [15,25) | 5 | 0.5 |
第2组 | [25,35) |
| 0.9 |
第3组 | [35,45) | 27 |
|
第4组 | [45,55) |
| 0.36 |
第5组 | [55,65) | 3 |
|
(1)分别求出
的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
| 支持 | 保留 | 不支持 |
|
|
|
|
|
|
|
|
(1)在所有参与调查的人中,用分层抽样的方法抽取
个人,已知从持“不支持”态度的人中抽取了
人,求
的值;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取
人看成一个总体,从这
人中任意选取
人,求至少有一人年龄在
岁以下的概率.
(3)在接受调查的人中,有
人给这项活动打出的分数如下:
,
,
,
,
,
,
,
,
,
,把这
个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过
概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com