科目: 来源: 题型:
【题目】已知函数
是定义在
上的偶函数,且当
时,
.现已画出函数
在
轴左侧的图象,如图所示,并根据图象:
![]()
(1)直接写出函数
,
的增区间;
(2)写出函数
,
的解析式;
(3)若函数
,
,求函数
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】“H大桥”是某市的交通要道,提高过桥车辆的通行能力可改善整个城市的交通状况.研究表明:在一般情况下,大桥上的车流速度
(单位:千米/小时)是车流密度
(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为
;当车流密度不超过20辆/千米时,车流速度为60千米/小时;当
时,车流速度
是车流密度
的一次函数.
(1)当
时,求函数
的表达式.
(2)设车流量
,求当车流密度为多少时,车流量最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元.设该公司的仪器月产量为
台,当月产量不超过400台时,总收益为
元,当月产量超过400台时,总收益为
元.(注:总收益=总成本+利润)
(1)将利润表示为月产量
的函数
;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
满足
.
(Ⅰ)当
时,解不等式
;
(Ⅱ)若关于x的方程
的解集中有且只有一个元素,求a的值;
(Ⅲ)设
,若对
,函数
在区间
上的最大值与最小值的差不超过1,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场建成后对外出租,租赁付费按年收取,标准为:每一个商铺租赁不超过1年收费20万元,超过1年的部分每年收取15万元(不足1年按1年计算).现甲、乙两人从该商场各自租赁一个商铺,两人的租赁时间都不超过3年.设甲、乙租赁时间不超过1年的概率分别为
,
;租赁时间1年以上且不超过2年的概率分别为
,
.甲、乙租赁相互独立.
(1)求甲租赁付费为50万元的概率;
(2)求甲、乙两人租赁付费相同的概率;
(3)设甲、乙两人租赁付费之和为随机变量
,求
的分布列与数学期望
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数![]()
(Ⅰ)当
时,求函数
在点
处的切线方程;
(Ⅱ)当
时,讨论
的单调性;
(Ⅲ)是否存在实数
,对任意
,且
有
恒成立?
若存在,求出
的取值范围;若不存在,说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,椭圆
:
的焦距与椭圆
:
的短轴长相等,且
与
的长轴长相等,这两个椭圆在第一象限的交点为
,直线
经过
在
轴正半轴上的顶点
且与直线
(
为坐标原点)垂直,
与
的另一个交点为
,
与
交于
,
两点.
![]()
(1)求
的标准方程;
(2)求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com