科目: 来源: 题型:
【题目】如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(I)证明:CE∥平面PAB;
(II)求直线CE与平面PBC所成角的正弦值
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85分,乙班学生成绩的中位数是85.
![]()
(1)求
的值;
(2)根据茎叶图,求甲、乙两班同学成绩的方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱
中,侧棱
底面
,
为棱
中点.
,
,
.
![]()
(I)求证:
平面
.
(II)求证:
平面
.
(III)在棱
的上是否存在点
,使得平面
平面
?如果存在,求此时
的值;如果不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆的中心在原点,焦点在
轴上,长轴长是短轴长的2倍且经过点
,平行于
的直线
在
轴上的截距为
,直线
交椭圆于
两个不同点.
![]()
(1)求椭圆的方程;
(2)求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
称为
,
的二维平方平均数,
称为
,
的二维算术平均数,
称为
,
的二维几何平均数,
称为
,
的二维调和平均数,其中
,
均为正数.
(1)试判断
与
的大小,并证明你的猜想.
(2)令
,
,试判断
与
的大小,并证明你的猜想.
(3)令
,
,
,试判断
、
、
三者之间的大小关系,并证明你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com