科目: 来源: 题型:
【题目】祖暅是我国南北朝时期杰出的数学家和天文学家祖冲之的儿子,他提出了一条原理:“幂势既同幂,则积不容异”.这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.一般大型热电厂的冷却塔大都采用双曲线型.设某双曲线型冷却塔是曲线
与直线
,
和
所围成的平面图形绕
轴旋转一周所得,如图所示.试应用祖暅原理类比求球体体积公式的方法,求出此冷却塔的体积为_______.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,曲线
由左半椭圆
和圆
在
轴右侧的部分连接而成,
,
是
与
的公共点,点
,
(均异于点
,
)分别是
,
上的动点.
(Ⅰ)若
的最大值为
,求半椭圆
的方程;
(Ⅱ)若直线
过点
,且
,
,求半椭圆
的离心率.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为
=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(
,
)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目: 来源: 题型:
【题目】设f(x)="xln" x–ax2+(2a–1)x,a
R.
(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;
(Ⅱ)已知f(x)在x=1处取得极大值.求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
与
轴相切于点
,且被
轴所截得的弦长为
,圆心
在第一象限.
(Ⅰ)求圆
的方程;
(Ⅱ)若点
是直线
上的动点,过
作圆
的切线,切点为
,当△
的面积最小时,求切线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ln (x+1)-
-x,a∈R.
(1)当a>0时,求函数f(x)的单调区间;
(2)若存在x>0,使f(x)+x+1<-
(a∈Z)成立,求a的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图(1),在平面六边形
中,四边形
是矩形,且
,
,
,点
,
分别是
,
的中点,分别沿直线
,
将
,
翻折成如图(2)的空间几何体
.
(Ⅰ)利用下列结论1或结论2,证明:
、
、
、
四点共面;
结论1:过空间一点作已知直线的垂面,有且仅有一个.
结论2:过平面内一条直线作该平面的垂面,有且仅有一个.
(Ⅱ)若二面角
和二面角
都是
,求三棱锥
的体积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】下表是某学生在4月份开始进人冲刺复习至高考前的5次大型联考数学成绩(分);
![]()
(1)请画出上表数据的散点图;
![]()
(2)①请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程;
②若在4月份开始进入冲刺复习前,该生的数学分数最好为116分,并以此作为初始分数,利用上述回归方程预测高考的数学成绩,并以预测高考成绩作为最终成绩,求该生4月份后复习提高率.(复习提高率=
,分数取整数)
附:回归直线的斜率和截距的最小二乘估计公式分别为
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在
内,发布成绩使用等级制,各等级划分标准见下表.
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | A | B | C | D |
规定:A,B,C三级为合格等级,D为不合格等级为了解该校高三年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.
按照
,
,
,
,
的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示
![]()
求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是合格等级的概率;
根据频率分布直方图,求成绩的中位数
精确到
;
在选取的样本中,从A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A等级的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com