科目: 来源: 题型:
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,现从参与调查的人群中随机选出20人的样本,并将这20人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示
(1)求a的值.
(2)根据频率分布直方图,估计参与调查人群的样本数据的分位数(保留两位小数).
(3)若从年龄在的人中随机抽取两位,求两人恰有一人的年龄在内的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=xcos+a,a∈R.
(I)求曲线y=f(x)在点x=处的切线的斜率;
(II)判断方程f '(x)=0(f '(x)为f(x)的导数)在区间(0,1)内的根的个数,说明理由;
(III)若函数F(x)=xsinx+cosx+ax在区间(0,1)内有且只有一个极值点,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?
(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望及方差.
参考公式:,其中n=a+b+c+d.
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,底面ABC为正三角形,侧棱AA1⊥底面ABC.已知D是BC的中点,AB=AA1=2.
(I)求证:平面AB1D⊥平面BB1C1C;
(II)求证:A1C∥平面AB1D;
(III)求三棱锥A1-AB1D的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】小王在某社交网 络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.
(1)若小王发放5元的红包2个,求甲恰得1个的概率;
(2)若小王发放3个红包,其中5元的2个,10元的1个,记乙所得红包的总钱数为X,求X的分布列.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知由实数构成的等比数列{an}满足a1=2,a1+ a3+ a5=42.
(I)求数列{an}的通项公式;
(II)求a2+ a4+ a6+…+ a2n.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正项数列的前项和为,数列满足.
(1)求数列的通项公式;
(2)数列满足,它的前项和为,
(ⅰ)求;
(ⅱ)若存在正整数,使不等式成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com