相关习题
 0  261877  261885  261891  261895  261901  261903  261907  261913  261915  261921  261927  261931  261933  261937  261943  261945  261951  261955  261957  261961  261963  261967  261969  261971  261972  261973  261975  261976  261977  261979  261981  261985  261987  261991  261993  261997  262003  262005  262011  262015  262017  262021  262027  262033  262035  262041  262045  262047  262053  262057  262063  262071  266669 

科目: 来源: 题型:

【题目】已知函数的图象关于轴对称,当函数在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义函数(其中为自变量,为常数).

(Ⅰ)若当时,函数的最小值为-1,求实数的值;

(Ⅱ)设全集,已知集合,若集合满足,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图在直三棱柱ABCA1B1C1AA1ABAC2,ABACM是棱BC的中点点P在线段A1B

(1)若P是线段A1B的中点,求直线MP与直线AC所成角的大小;

(2)若的中点,直线与平面所成角的正弦值为,求线段BP的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差/摄氏度

10

11

13

12

8

发芽数/颗

23

25

30

26

16

该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.

(1)求选取的2组数据恰好是不相邻2天的数据的概率;

(2)若选取的是12月1日与12月5日的2组数据,请根据12月2日至4日的数据,求出关于的线性回归方程,由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

附:参考公式:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在等腰直角中,,点在线段.

(Ⅰ) ,求的长;

)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数,其中.

(1)若,求函数在处的切线方程;

(2)讨论的单调区间.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ2.

(1)若以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,求曲线C的直角坐标方程;

(2)P(xy)是曲线C上的一个动点,求3x4y的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 .

(1)求函数的单调区间;

(2)若函数处取得极值,对任意恒成立,求实数的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动点到定点和到直线的距离之比为,设动点的轨迹为曲线,过点作垂直于轴的直线与曲线相交于两点,直线与曲线交于两点,与相交于一点(交点位于线段上,且与不重合).

(1)求曲线的方程;

(2)当直线与圆相切时,四边形的面积是否有最大值?若有,求出其最大值及对应的直线的方程;若没有,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线,则下面结论正确的是(

A.上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

B.上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

C.上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

D.上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

查看答案和解析>>

同步练习册答案