科目: 来源: 题型:
【题目】已知点
及圆
:
.
(1)若直线
过点
且与圆心
的距离为
,求直线
的方程.
(2)设直线
与圆
交于
,
两点,是否存在实数
,使得过点
的直线
垂直平分弦
?若存在,求出实数
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某综艺节目为比较甲、乙两名选手的各项能力(指标值满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,图中点A表示甲的创造力指标值为4,点B表示乙的空间能力指标值为3,则下面叙述正确的是
![]()
A. 乙的记忆能力优于甲的记忆能力
B. 乙的创造力优于观察能力
C. 甲的六大能力整体水平优于乙
D. 甲的六大能力中记忆能力最差
查看答案和解析>>
科目: 来源: 题型:
【题目】假设关于某设备的使用年限
(年)和所支出的年平均维修费用
(万元)(即维修费用之和除以使用年限),有如下的统计资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
维修费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图;
(2)求
关于
的线性回归方程;
(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式: ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识的竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐、规定:每场知识竞赛前三名的得分都分别为
(
,且
);选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列推理正确的是( )
A. 每场比赛第一名得分
为4 B. 甲可能有一场比赛获得第二名
C. 乙有四场比赛获得第三名 D. 丙可能有一场比赛获得第一名
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的极坐标方程和曲线
的直角坐标方程;
(2)已知点
是曲线
上一点,点
是曲线
上一点,
的最小值为
,求实数
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆
(
)的右焦点为
,右顶点为
,已知
,其中
为原点,
为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点
的直线
与椭圆交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
,若
,且
,求直线的
斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止供应该厂的生产和生活用水,已知该厂生活用水为每小时10吨,工业用水量W(吨)与时间t(小时,且规定早上6时t=0)的函数关系为:W=100
.水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管.
(1)若进水量选择为2级,试问:水塔中水的剩余量何时开始低于10吨?
(2)如何选择进水量,既能始终保证该厂的用水(水塔中水不空)又不会使水溢出?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com