精英家教网 > 高中数学 > 题目详情

【题目】函数的值域为_________________

【答案】[-1,1)

【解析】

由题可得,由易得0<≤2,

y∈[-1,1),所以函数的值域为[-1,1) .

【解题必备】(1)在高考中考查函数的定义域时多以客观题形式呈现,难度不大求函数定义域的三种常考类型及求解策略:①已知函数的解析式:构建使解析式有意义的不等式()求解②对于抽象函数:若已知函数f(x)的定义域为[ab],则复合函数f(g(x))的定义域由ag(x)≤b求出若已知函数f(g(x))的定义域为[ab],则f(x)的定义域为g(x)x∈[ab]时的值域;③对于实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求.

(2)求函数定义域的注意点①不要对解析式进行化简变形,以免定义域变化②当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集;③定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.

(3)求函数值域的基本方法:①观察法通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”,观察求得函数的值域;②利用常见函数的值域,一次函数的值域为,反比例函数的值域为,指数函数的值域为,对数函数的值域为,正、余弦函数的值域为,正切函数的值域为;③分离常数法将形如(a≠0)的函数分离常数,结合x的取值范围确定函数的值域;④换元法对某些无理函数或其他函数,通过适当的换元,把它们化为我们熟悉的函数,再用有关方法求值域;⑤配方法对二次函数型的解析式可以先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域的方法求函数的值域;⑥数形结合法作出函数图象,找出自变量对应的范围或分析条件的几何意义,在图上找出值域;⑦单调性法(也可结合导数),函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其单调性,进而求函数的最值和值域;⑧基本不等式法利用基本不等式(a>0,b>0)求最值,注意应用基本不等式的条件是“一正二定三相等”;⑨判别式法将函数转化为二次方程,利用Δ≥0,由此确定函数的值域利用判别式求函数值的范围,常用于一些“分式”函数、“无理”函数等,使用此法要特别注意自变量的取值范围;⑩有界性法,充分利用三角函数或一些代数表达式的有界性,求出值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线的参数方程为为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系中,直线的极坐标方程为

1)求出线的极坐标方程及直线的直角坐标方程;

2)设点为曲线上的任意一点,求点到直线的距离最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知, , 是正三角形, .

(1)求证:平面平面

(2)求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知四棱锥的侧棱长与底面边长都相等,四边形为正方形,点的中点,求异面直线所成角的余弦值.

2)如图,在长方体中,分别是的中点,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某自然资源探险组织试图穿越某峡谷,但峡谷内被某致命昆虫所侵扰,为了穿越这个峡谷,该探险组织进行了详细的调研,若每平方米的昆虫数量记为昆虫密度,调研发现,在这个峡谷中,昆虫密度是时间(单位:小时)的一个连续不间断的函数其函数表达式为

其中时间是午夜零点后的小时数,为常数.

1)求的值;

2)求出昆虫密度的最小值和出现最小值的时间

3)若昆虫密度不超过1250/平方米,则昆虫的侵扰是非致命性的,那么在一天24小时内哪些时间段,峡谷内昆虫出现非致命性的侵扰.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)求的单调区间;

(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“整治散落污染企业”等.下表是该市2016年11月份和2017年11月份的空气质量指数()(指数越小,空气质量越好)统计表.根据表中数据回答下列问题:

(1)将2017年11月的空气质量指数数据用该天的对应日期作为样本编号,再用系统抽样方法从中抽取6个数据,若在2017年11月16日到11月20日这五天中用简单随机抽样抽取到的样本的编号是19号,写出抽出的样本数据;

(2)从(1)中抽出的6个样本数据中随机抽取2个,求这2个数据之差的绝对值小于30的概率;

(3)根据《环境空气质量指数()技术规定(试行)》规定:当空气质量指数为(含50)时,空气质量级别为一级,求出这两年11月空气质量指数为一级的概率,你认为该市2017年初开始采取的这些大气污染治理措施是否有效?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的直角顶点轴上,点为斜边的中点,且平行于轴.

(1)求点的轨迹方程;

(2)设点的轨迹为曲线,直线的另一个交点为.以为直径的圆交轴于,记此圆的圆心为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中).

(1)当时,求函数点处的切线方程;

(2)若函数在区间上为增函数,求实数的取值范围;

(3)求证:对于任意大于的正整数,都有.

查看答案和解析>>

同步练习册答案