科目: 来源: 题型:
【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在
分以下的学生后,共有男生
名,女生
名.现采用分层抽样的方法,从中抽取了
名学生,按性别分为两组,并将两组学生成绩分为
组,得到如下所示频数分布表.
分数段 |
|
|
|
|
|
|
男 |
|
|
|
|
|
|
女 |
|
|
|
|
|
|
(Ⅰ)规定
分以上为优分(含
分),请你根据已知条件作出
列联表.
优分 | 非优分 | 合计 | |
男生 | |||
女生 | |||
合计 |
|
(Ⅱ)根据你作出的
列联表判断是否有
以上的把握认为“数学成绩与性别有关”.
附表及公式:
|
|
|
|
|
|
|
|
|
|
,其中
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合M是满足下列性质的函数
的全体:在定义域
内存在
,使函数
成立;
(1)请给出一个
的值,使函数![]()
(2)函数
是否是集合M中的元素?若是,请求出所有
组成的集合;若不是,请说明理由;
(3)设函数
,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为
(m),三块种植植物的矩形区域的总面积为
(m2).
![]()
(1)求
关于
的函数关系式;
(2)求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列
的前
项和为
,满足
(
),数列
满足
(
),且![]()
(1)证明数列
为等差数列,并求数列
和
的通项公式;
(2)若
,求数列
的前
项和
;
(3)若
,数列
的前
项和为
,对任意的
,都有
,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】假设关于某设备的使用年限
(年)和所支出的年平均维修费用
(万元)(即维修费用之和除以使用年限),有如下的统计资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
维修费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图;
(2)求
关于
的线性回归方程;
(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式: ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设
,
分别是椭圆C:
的左、右焦点,过
且斜率不为零的动直线l与椭圆C交于A,B两点.
Ⅰ
求
的周长;
Ⅱ
若存在直线l,使得直线
,AB,
与直线
分别交于P,Q,R三个不同的点,且满足P,Q,R到x轴的距离依次成等比数列,求该直线l的方程.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某校高二年级800名学生参加了地理学科考试,现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组
;第二组
;……;第六组
,并据此绘制了如图所示的频率分布直方图.
![]()
(1)求每个学生的成绩被抽中的概率;
(2)估计这次考试地理成绩的平均分和中位数;
(3)估计这次地理考试全年级80分以上的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com