科目: 来源: 题型:
【题目】某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)
性别 | 学生人数 | 抽取人数 |
女生 | 18 |
|
男生 |
| 3 |
(1)求
和
;
(2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,E,F,G分别是AB,CC1,AD的中点.
![]()
(1)求异面直线EG与B1C所成角的大小;
(2)棱CD上是否存在点T,使AT∥平面B1EF?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15∽65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄 |
|
|
|
|
|
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
![]()
(1)由以上统计数据填
列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.
②记抽到45岁以上的人数为
,求随机变量
的分布列及数学期望.
参考数据:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
,其中![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设α,β为两个不同平面,a,b为两条不同直线,下列选项正确的是( )
①若a∥α,b∥α,则a∥b
②若aα,α∥β,则a∥β
③若α∥β,a∥β,则![]()
④若a∥α,则a与平面α内的无数条直线平行
⑤若a∥b,则a平行于经过b的所有平面
A.①②B.③④C.②④D.②⑤
查看答案和解析>>
科目: 来源: 题型:
【题目】已知下列命题:
①命题“
”的否定是“
”;
②已知
为两个命题,若
为假命题,则
为真命题;
③“
”是“
”的充分不必要条件;
④“若
则
且
”的逆否命题为真命题.
其中 真命题的序号是__________.(写出所有满足题意的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】第23届冬季奥运会于2018年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:
![]()
(1)若讲每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全
列联表:
![]()
并判断能否有90%的把握认为该校教职工是否为“体育达人”与“性别”有关;
(2)在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为
,求的
分布列与数学期望.
附表及公式:
![]()
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(Ⅰ)求
的单调区间;
(Ⅱ)求
在区间
上的最小值.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】(Ⅰ)
.
令
,得
.
![]()
与
的情况如上:
所以,
的单调递减区间是
,单调递增区间是
.
(Ⅱ)当
,即
时,函数
在
上单调递增,
所以
在区间
上的最小值为
.
当
,即
时,
由(Ⅰ)知
在
上单调递减,在
上单调递增,
所以
在区间
上的最小值为
.
当
,即
时,函数
在
上单调递减,
所以
在区间
上的最小值为
.
综上,当
时,
的最小值为
;
当
时,
的最小值为
;
当
时,
的最小值为
.
【题型】解答题
【结束】
19
【题目】已知抛物线
的顶点在原点,焦点在坐标轴上,点
为抛物线
上一点.
(1)求
的方程;
(2)若点
在
上,过
作
的两弦
与
,若
,求证: 直线
过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】四棱锥
中,底面
是边长为
的菱形,侧面
底面
,
,
,
是
中点,点
在侧棱
上.
![]()
(Ⅰ)求证:
;
(Ⅱ)若
是
中点,求二面角
的余弦值;
(Ⅲ)是否存在
,使
平面
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:若函数
的定义域为
,且存在非零常数
,对任意
,
恒成立,则称
为线周期函数,
为
的线周期.
(1)下列函数①
,②
,③
(其中
表示不超过x的最大整数),是线周期函数的是 (直接填写序号);
(2)若
为线周期函数,其线周期为
,求证:
为周期函数;
(3)若
为线周期函数,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com