科目: 来源: 题型:
【题目】如图所示,在平面直角坐标系中,动点P,Q从点出发在单位圆上运动,点P按逆时针方向每秒钟转弧度,点Q按顺时针方向每秒钟转弧度,则P,Q两点在第2019次相遇时,点P的坐标为________.
查看答案和解析>>
科目: 来源: 题型:
【题目】若α是第一象限角,则sinα+cosα的值与1的大小关系是( )
A. sinα+cosα>1B. sinα+cosα=1C. sinα+cosα<1D. 不能确定
查看答案和解析>>
科目: 来源: 题型:
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人是“微信控”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】本小题满分13分)
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.
(1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);
(3)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
科目: 来源: 题型:
【题目】以下给出了4个命题:
(1)两个长度相等的向量一定相等;
(2)相等的向量起点必相同;
(3)若,且,则;
(4)若向量的模小于的模,则.
其中正确命题的个数共有( )
A.3 个B.2 个C.1 个D.0个
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆(为参数),A,B是C上的动点,且满足(O为坐标原点),以原点O为极点,x轴的正半轴为极轴建立坐标系,点D的极坐标为.
(1)求椭圆C的极坐标方程和点D的直角坐标;
(2)利用椭圆C的极坐标方程证明为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆的左焦点为,离心率为,为圆的圆心.
(1)求椭圆的方程;
(2)已知过椭圆右焦点的直线交椭圆于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,·=0,||=12,||=15,l为线段BC的垂直平分线,l与BC交于点D,E为l上异于D的任意一点.
(1)求·的值;
(2)判断·的值是否为一个常数,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).
(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;
(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com