相关习题
 0  262506  262514  262520  262524  262530  262532  262536  262542  262544  262550  262556  262560  262562  262566  262572  262574  262580  262584  262586  262590  262592  262596  262598  262600  262601  262602  262604  262605  262606  262608  262610  262614  262616  262620  262622  262626  262632  262634  262640  262644  262646  262650  262656  262662  262664  262670  262674  262676  262682  262686  262692  262700  266669 

科目: 来源: 题型:

【题目】已知函数f(x)=ax2-2x+1.

(1)试讨论函数f(x)的单调性;

(2)若a≤1,且f(x)在[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a),求g(a)的表达式;

(3)在(2)的条件下,求证:g(a)≥.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,椭圆与一等轴双曲线相交,是其中一个交点,并且双曲线的顶点是该椭圆的焦点,双曲线的焦点是椭圆的左、右顶点,设为该双曲线上异于顶点的任意一点,直线的斜率分别为,且直线与椭圆的交点分别为.

1)求椭圆和双曲线的标准方程;

2)(i)证明:

ii)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ax3-3ax,g(x)=bx2+clnx且g(x)在点(1,g(1))处的切线方程为2y-1=0.

(1)求g(x)的解析式;

(2)设函数G(x)=若方程G(x)=a2有且仅有四个解求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要条件;

(2)求实数a的一个值,使它成为MP={x|5<x≤8}的一个充分但不必要条件.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知点P所在平面外一点,MNK分别ABPCPA的中点,平面平面

1)求证:平面PAD

2)直线PB上是否存在点H,使得平面平面ABCD,并加以证明;

3)求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,函数的图象在处的切线与直线平行.

(Ⅰ)求实数的值;

(Ⅱ)若函数存在单调递减区间,求实数的取值范围;

(Ⅲ)设()是函数的两个极值点,若,试求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量,.

(Ⅰ)若,求的值;

(Ⅱ)令,把函数的图象上每一点的横坐标都缩小为原来的一半(纵坐标不变),再把所得图象沿轴向右平移个单位,得到函数的图象,试求函数的单调增区间及图象的对称中心.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,棱长为1的正方体中,点P是线段上的动点.当在平面,平面,平面ABCD上的正投影都为三角形时,将它们的面积分别记为

1)当时,________(用“=”填空);

2的最大值为________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数是定义在上的偶函数,其导函数为,且当时,,则不等式的解集为_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】山东省于2015年设立了水下考古研究中心,以此推动全省的水下考古、水下文化遗产保护等工作;水下考古研究中心工作站,分别设在位于刘公岛的中国甲午战争博物院和威海市博物馆。为对刘公岛周边海域水底情况进行详细了解,然后再选择合适的时机下水探摸、打捞,省水下考古中心在一次水下考古活动中,某一潜水员需潜水米到水底进行考古作业,其用氧量包含以下三个方面:

①下潜平均速度为米/分钟,每分钟的用氧量为升;

②水底作业时间范围是最少10分钟最多20分钟,每分钟用氧量为0.4升;

③返回水面时,平均速度为米/分钟,每分钟用氧量为0.32升.

潜水员在此次考古活动中的总用氧量为升.

(Ⅰ)如果水底作业时间是分钟,将表示为的函数;

(Ⅱ)若,水底作业时间为20分钟,求总用氧量的取值范围.

查看答案和解析>>

同步练习册答案