科目: 来源: 题型:
【题目】榆林市政府坚持保护环境和节约资源,坚持推进生态文明建设。若市财政局下拨专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金
(单位:百万元)的函数
(单位:百万元):
,处理污染项目五年内带来的生态收益可表示为投放资金
单位:(单位:百万元)的函数
(单位:百万元):
。
(1)设分配给植绿护绿项目的资金为
(百万元),则两个生态项目五年内带来的收益总和为y,写出y关于
的函数解析式和定义域;
(2)试求出y的最大值,并求出此时对两个生态项目的投资分别为多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】设y=f(x)在(-∞,1]上有定义,对于给定的实数K,定义fK(x)=
,给出函数f(x)=2x+1-4x,若对于任意x∈(-∞,1],恒有fK(x)=f(x),则( )
A.K的最大值为0
B.K的最小值为0
C.K的最大值为1
D.K的最小值为1
查看答案和解析>>
科目: 来源: 题型:
【题目】我国南宋数学家杨辉所著的
详解九章算术
一书中,用图
的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和
现将杨辉三角形中的奇数换成1,偶数换成0,得到图
所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为
,如
,
,
,
,
,则
![]()
![]()
A. 2 B. 4 C. 8 D. 16
查看答案和解析>>
科目: 来源: 题型:
【题目】出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的。在出租车几何学中,点还是形如
的有序实数对,直线还是满足
的所有
组成的图形,角度大小的定义也和原来一样,直角坐标系内任意两点
定义它们之间的一种“距离”:
,请解决以下问题:
(1)求线段
上一点
到点
的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆”上的所有点到点
的“距离”均为
的“圆”方程,并求该“圆”围成的图形的面积;
(3)若点
到点
的“距离”和点
到点
的“距离”相等,其中实数
满足
,求所有满足条件的点
的轨迹的长之和.
查看答案和解析>>
科目: 来源: 题型:
【题目】给定平面上的点集
,
中任三点均不共线。将
中所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案
。不同的分组方式得到不同的图案。将图案
中所含的以
中的点为顶点的三角形的个数记为
。
(1)求
的最小值
;
(2)设
是使
的一个图案,若将
中的线段(指以
的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色。证明存在一个染色方案,使
染色后不含以
的点为顶点的三边颜色相同的三角形。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系
中,直线
与直线
之间的阴影部分记为
,区域
中动点
到
的距离之积为1.
![]()
(1)求点
的轨迹
的方程;
(2)对于区域
中动点
,求
的取值范围;
(3)动直线
穿过区域
,分别交直线
于
两点,若直线
与点
的轨迹
有且只有一个公共点,求证:
的面积值为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com