【题目】我国南宋数学家杨辉所著的
详解九章算术
一书中,用图
的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和
现将杨辉三角形中的奇数换成1,偶数换成0,得到图
所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为
,如
,
,
,
,
,则
![]()
![]()
A. 2 B. 4 C. 8 D. 16
科目:高中数学 来源: 题型:
【题目】已知圆锥的顶点为
,底面圆心为
,半径为
.
![]()
(1)设圆锥的母线长为
,求圆锥的体积;
(2)设
,
、
是底面半径,且
,
为线段
的中点,如图.求异面直线
与
所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AOB是一块半径为r的扇形空地,
.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若
,设![]()
![]()
(Ⅰ)记活动场地与停车场占地总面积为
,求
的表达式;
(Ⅱ)当
为何值时,可使活动场地与停车场占地总面积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,方程
(为
,
为不相等的两个正数)所代表的曲线是( )
A. 三角形 B. 正方形 C. 非正方形的长方形 D. 非正方形的菱形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
和
,离心率是
,直线
过点
交椭圆于
,
两点,当直线
过点
时,
的周长为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)当直线
绕点
运动时,试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,设点
,直线
:
,点
在直线
上移动,
是线段
与
轴的交点,过
、
分别作直线
、
,使
,
,
.
![]()
(1)求动点
的轨迹
的方程;
(2)已知⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,若直线
在
轴上的截距为
,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com