科目: 来源: 题型:
【题目】在自然数列中由1开始依次按如下规则将某些数染成红色.先染1;再染两个偶数2,4;再染4后最邻近的三个连续奇数5,7,9;再染9后最邻近的四个连续偶数10,12,14,16;再染此后最邻近的五个连续奇数17,19,21,23,25.按此规则一直染下去,得一红色子列1,2,4,5,7,9,10,12,14,16,17,….则红色子列中由1开始数起的第1996个数是_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】滨海市政府今年加大了招商引资的力度,吸引外资的数量明显增加.一外商计划在滨海市投资两个项目,总投资20亿元,其中甲项目的10年收益额(单位:亿元)与投资额(单位:亿元)满足,乙项目的10年收益额(单位:亿元)与投资额(单位:亿元)满足,并且每个项目至少要投资2亿元.设两个项目的10年收益额之和为.
(1)求;
(2)如何安排甲、乙两个项目的投资额,才能使这两个项目的10年收益额之和最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为的直线l与抛物线C交于A,B两点,B在x轴的上方,且点B的横坐标为4.
(1)求抛物线C的标准方程;
(2)设点P为抛物线C上异于A,B的点,直线PA与PB分别交抛物线C的准线于E,G两点,x轴与准线的交点为H,求证:HGHE为定值,并求出定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l方程为(m+2)x﹣(m+1)y﹣3m﹣7=0,m∈R.
(1)求证:直线l恒过定点P,并求出定点P的坐标;
(2)若直线l在x轴,y轴上的截距相等,求直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校有微机台,分别放在个房间,各房间开门钥匙互不相同.某期培训班有学员人(),每晚恰有人进机房实习操作,为保证每人一台机,至少应准备多少把钥匙分给这个学员,使得每晚不论哪个人进机房,都能用自己分到的钥匙打开一间机房的门进去练习,并按分得钥匙少的人先开门的原则,能保证每人恰可得到一个房间.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
(1)求圆关于直线对称的圆的标准方程;
(2)过点的直线被圆截得的弦长为8,求直线的方程;
(3)当取何值时,直线与圆相交的弦长最短,并求出最短弦长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆过点,且圆心在直线上.
(1)求圆的方程;
(2)平面上有两点,点是圆上的动点,求的最小值;
(3)若是轴上的动点,分别切圆于两点,试问:直线是否恒过定点?若是,求出定点坐标,若不是,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆E:,若椭圆上一点与其中心及长轴一个端点构成等腰直角三角形.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)如图,若直线l与椭圆相交于AB且AB是圆的一条直径,求椭圆E的标准方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知分别是双曲线的左、右焦点,过点作垂直与轴的直线交双曲线于,两点,若为锐角三角形,则双曲线的离心率的取值范围是_______.
【答案】
【解析】
根据双曲线的通径求得点的坐标,将三角形为锐角三角形,转化为,即,将表达式转化为含有离心率的不等式,解不等式求得离心率的取值范围.
根据双曲线的通径可知,由于三角形为锐角三角形,结合双曲线的对称性可知,故,即,即,解得,故离心率的取值范围是.
【点睛】
本小题主要考查双曲线的离心率的取值范围的求法,考查双曲线的通径,考查双曲线的对称性,考查化归与转化的数学思想方法,属于中档题.本小题的主要突破口在将三角形为锐角三角形,转化为,利用列不等式,再将不等式转化为只含离心率的表达式,解不等式求得双曲线离心率的取值范围.
【题型】填空题
【结束】
17
【题目】已知命题:方程有两个不相等的实数根;命题:不等式的解集为.若或为真,为假,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com