科目: 来源: 题型:
【题目】关于函数f(x)=4sin(2x+
)(x∈R),有下列命题:
①y=f(x)的表达式可改写为y=4cos(2x﹣
);
②y=f(x)是以2π为最小正周期的周期函数;
③y=f(x)的图象关于点
对称;
④y=f(x)的图象关于直线x=﹣
对称.
其中正确的命题的序号是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数).
(1)求
和
的直角坐标方程;
(2)若曲线
截直线
所得线段的中点坐标为
,求
的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知![]()
为椭圆
上一点,
分别为
关于
轴,原点,
轴的对称点,
(1)求四边形
面积的最大值;
(2)当四边形
最大时,在线段
上任取一点
,若过
的直线与椭圆相交于
两点,且
中点恰为
,求直线
斜率
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:
,
,
,
,
.
分数段 |
|
|
|
|
| 1∶1 | 2∶1 | 3∶4 | 4∶5 |
![]()
(1)求图中
的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(
)与数学成绩相应分数段的人数(
)之比如下表所示,求数学成绩在
之外的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题满分15分)已知中心在原点O,焦点在x轴上,离心率为
的椭圆过点(
,
).
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线
,和两点
,给出如下结论其中真命题的序号是________
①当
变化时,
与
分别经过定点
和
;
②不论
为何值时,
与
都互相垂直;
③如果
与
交于点
,则
的最大值是2;
④
为直线
上的点,则
的最小值是
.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有
人,现采用分层抽样的方法,从该单位上述员工中抽取
人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为
.享受情况如右表,其中“
”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设
为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件
发生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,过抛物线
(
)上一点
,作两条直线分别交抛物线于点
,
,若
与
的斜率满足
.
![]()
(1)证明:直线
的斜率为定值,并求出该定值;
(2)若直线
在
轴上的截距
,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com