科目: 来源: 题型:
【题目】 如图,在四棱锥
中,底面
为平行四边形,
为等边三角形,平面
平面
,
,
,
,
![]()
(Ⅰ)设
分别为
的中点,求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
为边长为2的菱形,
,
,面
面
,点
为棱
的中点.
![]()
(1)在棱
上是否存在一点
,使得
面
,并说明理由;
(2)当二面角
的余弦值为
时,求直线
与平面
所成的角.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
![]()
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】学校艺术节对同一类的
,
,
,
四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是
或
作品获得一等奖”;
乙说:“
作品获得一等奖”;
丙说:“
,
两项作品未获得一等奖”;
丁说:“是
作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如果数列
,
,…,
(m ≥ 3,
)满足:①
<
<…<
;②存在实数
,
,
,…,
和d,使得
≤
<
≤
<
≤
<…≤
<
,且对任意0 ≤ i ≤ m﹣1(I
),均有
,那么称数列
,
,…,
是“Q数列”.
(1)判断数列1,3,6,10是不是“Q数列”,并说明理由;
(2)已知k,t均为常数,且k>0,求证:对任意给定的不小于3的正整数m,数列
(n=1,2,…,m)都是“Q数列”;
(3)若数列
(n=1,2,…,m)是“Q数列”,求m的所有可能值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com