相关习题
 0  262745  262753  262759  262763  262769  262771  262775  262781  262783  262789  262795  262799  262801  262805  262811  262813  262819  262823  262825  262829  262831  262835  262837  262839  262840  262841  262843  262844  262845  262847  262849  262853  262855  262859  262861  262865  262871  262873  262879  262883  262885  262889  262895  262901  262903  262909  262913  262915  262921  262925  262931  262939  266669 

科目: 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,现用一种新配方做试验,生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:

质量指标值

频数

6

26

38

22

8

(1)将答题卡上列出的这些数据的频率分布表填写完整,并补齐频率分布直方图;

(2)估计这种产品质量指标值的平均值(同一组中的数据用该组区间的中点值作代表)与中位数(结果精确到0.1).

质量指标值分组

频数

频率

6

0.06

合计

100

1

查看答案和解析>>

科目: 来源: 题型:

【题目】某校将5名插班生甲、乙、丙、丁、戊编入3个班级,每班至少1人,则不同的安排方案共有(

A.150B.120C.240D.540

查看答案和解析>>

科目: 来源: 题型:

【题目】袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下24个随机数组:

232 321 230 023 123 021 132 220 011 203 331 100

231 130 133 231 031 320 122 103 233 221 020 132

由此可以估计,恰好第三次就停止的概率为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某城市理论预测2020年到2024年人口总数与年份的关系如下表所示:

年份202x(年)

0

1

2

3

4

人口数y(十万)

5

7

8

11

19

1)请在右面的坐标系中画出上表数据的散点图;

2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

3)据此估计2025年该城市人口总数.

(参考公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列四个命题:

①函数与函数表示同一个函数;

②奇函数的图象一定通过直角坐标系的原点;

③函数的图象可由的图象向右平移1个单位得到;

④若函数的定义域为,则函数的定义域为

⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根.

其中正确命题的序号是________.(填上所有正确命题的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】一个袋子里装有7个球,其中有红球4.白球3.这些球除颜色外全相同.

1)若一次从袋中取出3个球,取出的球颜色不完全相同的概率;

2)若一次从袋中取出3个球.其中若取到红球得0分,取到白球得1分,记随机变量为取出的三个小球得分之和,求的分布列,并求其数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线,点的焦点,过的直线两点.

(1)设的准线上的射影分别为,线段的中点为,证明:.

(2)在轴上是否存在一点,使得直线的斜率之和为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了缓解市民吃肉难的生活问题,某生猪养殖公司欲将一批猪肉用冷藏汽车从甲地运往相距千米的乙地,运费为每小时元,装卸费为元,猪肉在运输途中的损耗费(单位:元)是汽车速度值的.(说明:运输的总费用=运费+装卸费+损耗费)

1)若汽车的速度为每小时千米,试求运输的总费用;

2)为使运输的总费用不超过元,求汽车行驶速度的范围;

3)若要使运输的总费用最小,汽车应以每小时多少千米的速度行驶?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数)是定义在上的奇函数.

(Ⅰ)求实数的值;

(Ⅱ)判断并用定义证明的单调性;

(Ⅲ)若,且成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】技术员小张对甲、乙两项工作投入时间(小时)与做这两项工作所得报酬(百元)的关系式为:,若这两项工作投入的总时间为120小时,且每项工作至少投入20小时.

1)试建立小张所得总报酬(单位:百元)与对乙项工作投入的时间(单位:小时)的函数关系式,并指明函数定义域;

2)小张如何计划使用时间,才能使所得报酬最高?

查看答案和解析>>

同步练习册答案