科目: 来源: 题型:
【题目】对于由2n个质数组成的集合
,可将其元素两两搭配成n个乘积,得到一个n元集.若
与
是由此得到的两个n元集,其中,
,且
,则称集合对{A ,B}是由M炮制成的一幅“对联”(如由四元集{a,b,c,d}可炮制成三幅对联:
![]()
.
求六元质数集M={a,b,c,d,e,f}所能炮制成的对联数.
查看答案和解析>>
科目: 来源: 题型:
【题目】判断下列命题是否正确,请说明理由:
(1)若向量
与
同向,且
,则
;
(2)若向
,则
与
的长度相等且方向相同或相反;
(3)对于任意向量
,若
与
的方向相同,则
=
;
(4)由于
方向不确定,故
不与任意向量平行;
(5)向量
与
平行,则向量
与
方向相同或相反.
查看答案和解析>>
科目: 来源: 题型:
【题目】(12分)已知椭圆
的离心率为
,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线
与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的普通方程和曲线
的直角坐标方程;
(2)已知点
是曲线
上的动点,求点
到曲线
的最小距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:
用户编号 | 评分 | 用户编号 | 评分 | 用户编号 | 评分 | 用户编号 | 评分 | |||
1 2 3 4 5 6 7 8 9 10 | 78 73 81 92 95 85 79 84 63 86 | 11 12 13 14 15 16 17 18 19 20 | 88 86 95 76 97 78 88 82 76 89 | 21 22 23 24 25 26 27 28 29 30 | 79 83 72 74 91 66 80 83 74 82 | 31 32 33 34 35 36 37 38 39 40 | 93 78 75 81 84 77 81 76 85 89 |
用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.
(1)请你列出抽到的10个样本的评分数据;
(2)计算所抽到的10个样本的均值
和方差
;
(3)在(2)条件下,若用户的满意度评分在
之间,则满意度等级为“
级”。试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“
级”的用户所占的百分比是多少?
(参考数据:
)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆E的一个顶点为
,焦点在x轴上,若椭圆的右焦点到直线
的距离是3.
求椭圆E的方程;
设过点A的直线l与该椭圆交于另一点B,当弦AB的长度最大时,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com