相关习题
 0  263071  263079  263085  263089  263095  263097  263101  263107  263109  263115  263121  263125  263127  263131  263137  263139  263145  263149  263151  263155  263157  263161  263163  263165  263166  263167  263169  263170  263171  263173  263175  263179  263181  263185  263187  263191  263197  263199  263205  263209  263211  263215  263221  263227  263229  263235  263239  263241  263247  263251  263257  263265  266669 

科目: 来源: 题型:

【题目】中,所对的边长为.

1)若,求

2)讨论使有一解、两解、无解时的取值情况.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:

每月完成合格产品的件数(单位:百件)

频数

10

45

35

6

4

男员工人数

7

23

18

1

1

(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?

非“生产能手”

“生产能手”

合计

男员工

女员工

合计

(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.

附:

.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:

满意

不满意

男顾客

40

10

女顾客

30

20

1)分别估计男、女顾客对该商场服务满意的概率;

2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目: 来源: 题型:

【题目】的内角A,B,C的对边分别为abc,且B为钝角,

(1);(2)求的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】以下几个命题中:

①线性回归直线方程恒过样本中心

②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;

③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;

④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方.

其中真命题为 _________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知直线,圆的圆心为,且经过点

1)求圆的方程;

2)若圆与圆关于直线对称,点分别为圆上任意一点,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】一批用于手电筒的电池,每节电池的寿命服从正态分布(寿命单位:小时).考虑到生产成本,电池使用寿命在内是合格产品.

1)求一节电池是合格产品的概率(结果四舍五入,保留一位小数);

2)根据(1)中的数据结果,若质检部门检查4节电池,记抽查电池合格的数量为,求随机变量的分布列、数学期望及方差.

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目: 来源: 题型:

【题目】一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200(即获得-200).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.

(1)设每盘游戏获得的分数为X,求X的分布列;

(2)玩三盘游戏,至少有一盘出现音乐的概率为多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】某校的一个社会实践调查小组,在对该校学生的良好用眼习惯的调查中,随机发放了120分问卷.

对收回的100份有效问卷进行统计,得到如下2×2列联表:

做不到科学用眼

能做到科学用眼

合计

45

15

合计

100

1)求上表中的x

2)若在犯错误的概率不超过P的前提下认为良好用眼习惯与性别有关,那么根据临界值表,最精确的P的值应为多少?

附:独立性检验统计量,其中

独立性检验临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

查看答案和解析>>

同步练习册答案