相关习题
 0  263090  263098  263104  263108  263114  263116  263120  263126  263128  263134  263140  263144  263146  263150  263156  263158  263164  263168  263170  263174  263176  263180  263182  263184  263185  263186  263188  263189  263190  263192  263194  263198  263200  263204  263206  263210  263216  263218  263224  263228  263230  263234  263240  263246  263248  263254  263258  263260  263266  263270  263276  263284  266669 

科目: 来源: 题型:

【题目】设有编号为12345的五把锁和对应的五把钥匙.现给这5把钥匙也贴上编号为12345的五个标签,则共有______种不同的贴标签的方法:若想使这5把钥匙中至少有2把能打开贴有相同标签的锁,则有______种不同的贴标签的方法.(本题两个空均用数字作答)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,平面,底面为菱形,且,E的中点.

(1)求证:平面平面;

(2)棱上是否存在点F,使得平面?说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明口袋中有3张10元,3张20元(因纸币有编号认定每张纸币不同),现从中掏出纸币超过45元的方法有_______种;若小明每次掏出纸币的概率是等可能的,不放回地掏出4张,刚好是50元的概率为_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB=2,AD=1,MAB的中点,将△ADM沿DM翻折.在翻折过程中,当二面角ABCD的平面角最大时,其正切值为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C上,过Mx轴的垂线,垂足为N,点P满足.

1)求点P的轨迹方程;

(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线lC的左焦点F.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的短轴长为4,离心率为,斜率不为0的直线l与椭圆恒交于AB两点,且以AB为直径的圆过椭圆的右顶点M

1)求椭圆的标准方程;

2)直线l是否过定点,如果过定点,求出该定点的坐标;如果不过定点,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的函数,其导函数.

1)如果函数处有极值,求函数的表达式;

2)当时,函数的图象上任一点P处的切线斜率为k,若,求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=CBDAB=BD

1)证明:平面ACD⊥平面ABC

2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,在高三年级中随机选取名学生进行跟踪问卷,其中每周线上学习数学时间不少于小时的有人,在这人中分数不足分的有人;在每周线上学习数学时间不足于小时的人中,在检测考试中数学平均成绩不足分的占.

1)请完成列联表;并判断是否有的把握认为“高三学生的数学成绩与学生线上学习时间有关”;

分数不少于

分数不足

合计

线上学习时间不少于小时

线上学习时间不足小时

合计

2)在上述样本中从分数不足于分的学生中,按照分层抽样的方法,抽到线上学习时间不少于小时和线上学习时间不足小时的学生共名,若在这名学生中随机抽取人,求这人每周线上学习时间都不足小时的概率.(临界值表仅供参考)

(参考公式,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

以最高气温位于各区间的频率代替最高气温位于该区间的概率.

(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;

(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时?的数学期望达到最大值?

查看答案和解析>>

同步练习册答案