科目: 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
![]()
(1)证明:
平面AEC;
(2)设AP=1,AD=
,三棱锥P-ABD的体积V=
,求A到平面PBC的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:
)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间
,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
![]()
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量
(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为
(单位:元),当六月份这种酸奶一天的进货量
(单位:瓶)为多少时,
的数学期望达到最大值?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在边长为
的菱形
中,
.点
,
分别在边
,
上,点
与点
,
不重合,
,
.沿
将
翻折到
的位置,使平面
平面
.
![]()
(1)求证:
平面
;
(2)当
与平面
所成的角为
时,求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线
上任意一点
到直线
的距离是它到点
距离的2倍;曲线
是以原点为顶点,
为焦点的抛物线.
(1)求
的方程;
(2)设过点
的直线与曲线
相交于
两点,分别以
为切点引曲线
的两条切线
,设
相交于点
,连接
的直线交曲线
于
两点,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
是函数
的导函数,则
的图象大致是( )
A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]
C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆的方程
,从0,3,4,5,6,7,8,9,10这九个数中选出3个不同的数,分别作圆心的横坐标、纵坐标和圆的半径.问:
(1)可以作多少个不同的圆?
(2)经过原点的圆有多少个?
(3)圆心在直线上
的圆有多少个?
查看答案和解析>>
科目: 来源: 题型:
【题目】从1~2010中选出总和为1006779的1005个数
,且这1005个数中任意两数之和都不等于2011.
(1)证明:
为定值;
(2)当
取最小值时,求
中所有小于1005的数之和。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com