相关习题
 0  263198  263206  263212  263216  263222  263224  263228  263234  263236  263242  263248  263252  263254  263258  263264  263266  263272  263276  263278  263282  263284  263288  263290  263292  263293  263294  263296  263297  263298  263300  263302  263306  263308  263312  263314  263318  263324  263326  263332  263336  263338  263342  263348  263354  263356  263362  263366  263368  263374  263378  263384  263392  266669 

科目: 来源: 题型:

【题目】如图,在三棱柱中,的中点,点在平面内的射影在线段上.

(1)求证:

(2)若是正三角形,求三棱柱的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了调查某品牌饮料的某种食品添加剂是否超标,现对该品牌下的两种饮料一种是碳酸饮料含二氧化碳,另一种是果汁饮料不含二氧化碳进行检测,现随机抽取了碳酸饮料、果汁饮料各10均是组成的一个样本,进行了检测,得到了如下茎叶图根据国家食品安全规定当该种添加剂的指标大于毫克为偏高,反之即为正常.

1)依据上述样本数据,完成下列列联表,并判断能否在犯错误的概率不超过的前提下认为食品添加剂是否偏高与是否含二氧化碳有关系?

正常

偏高

合计

碳酸饮料

果汁饮料

合计

2)现从食品添加剂偏高的样本中随机抽取2瓶饮料去做其它检测,求这两种饮料都被抽到的概率.

参考公式:,其中

参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于MN两点。

(1)写出直线l的普通方程和曲线C的直角坐标方程:

(2)若成等比数列,求a的值。

查看答案和解析>>

科目: 来源: 题型:

【题目】随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级, 一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )

①1月至8月空气合格天数超过20天的月份有5个

②第二季度与第一季度相比,空气达标天数的比重下降了

③8月是空气质量最好的一个月

④6月份的空气质量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在空间直角坐标系中,已知正四棱锥的高,点分别在轴和轴上,且,点是棱的中点.

(1)求直线与平面所成角的正弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】1)在极坐标系中,过点作曲线的切线,求直线的极坐标方程.

2)已知直线为参数)恒经过椭圆为参数)的右焦点

①求的值;

②设直线与椭圆交于两点,求的最大值与最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,函数.

(1)若,求曲线在点处的切线方程;

(2)若函数有且只有一个零点,求实数的取值范围;

(3)若函数恒成立,求实数的取值范围.(是自然对数的底数,)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列中,,且.

(1)求证:是等比数列,并求数列的通项公式;

(2)数列中是否存在不同的三项按照一定顺序重新排列后,构成等差数列?若存在,求满足条件的项;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.己知

的极坐标为,曲线的极坐标方程为,曲线的参数方程为,为参数).曲线和曲线相交于两点.

(1)求点的直角坐标;

(2)求曲线的直角坐标方程和曲线的普通方程;

(3)求的面枳,

查看答案和解析>>

科目: 来源: 题型:

【题目】某媒体对男女延迟退休这一公众关注的问题进行了民意调查,下表是在某单位调查后得到的数据(人数)

赞同

反对

合计

5

6

11

11

3

14

合计

16

9

25

1)能否有90%以上的把握认为对这一问题的看法与性别有关?

2)进一步调查:

①从赞同男女延迟退休人中选出人进行陈述发言,求事件男士和女士各至少有人发言的概率;

②从反对男女延迟退休人中选出人进行座谈,设选出的人中女士人数为,求的分布列和数学期望.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案