科目: 来源: 题型:
【题目】设
,
为三维空间中
个点组成的有限集,其中任意四点不在一个平面上,将集合
中的点染成白色或黑色,使得任意一个与集合
至少交于四个点的球面具有这样的性质:这些交点中恰有一半的点为白色的.证明:集合
中所有的点均在一个球面上,
查看答案和解析>>
科目: 来源: 题型:
【题目】为响应“文化强国建设”号召,并增加学生们对古典文学的学习兴趣,雅礼中学计划建设一个古典文学熏陶室.为了解学生阅读需求,随机抽取200名学生做统计调查.统计显示,男生喜欢阅读古典文学的有64人,不喜欢的有56人;女生喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导学生积极参与阅读古典文学书籍,语文教研组计划牵头举办雅礼教育集团古典文学阅读交流会.经过综合考虑与对比,语文教研组已经从这200人中筛选出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜欢古典文学.现从这9名代表中任选3名男生代表和2名女生代表参加交流会,记
为参加交流会的5人中喜欢古典文学的人数,求
的分布列及数学期望
.
附:
,其中
.
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目: 来源: 题型:
【题目】有4位同学在同一天的上午、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学测试两个项目,分别在上午和下午,且每人上午和下午测试的项目不能相同.若上午不测“握力”,下午不测“台阶”,其余项目上午、下午都各测试一人,则不同的安排方式的种数为( )
A.264B.72C.266D.274
查看答案和解析>>
科目: 来源: 题型:
【题目】函数
,下列对函数
的性质描述正确的是( )
A.函数
的图象关于点
对称
B.若
,则函数f(x)有极值点
C.若
,函数
在区间
单调递减
D.若函数
有且只有3个零点,则a的取值范围是![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某国建了一座时间机器,形似一条圆形地铁轨道,其上均匀设置了2014个站台(编号依次为l,2,…,2014)分别对应一个年份,起始站及终点站均为第1站(对应2014年).为节约成本,机器每次运行一圈,只在其中一半的站台停靠,出于技术原因,每次至多行驶三站必须停靠一次,且所停靠的任两个站台不能是圆形轨道的对径点.试求不同的停靠方式的种数.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法中错误的是( )
A.将一组数据中的每一个数据都加上或减去同一个常数后,方差不变
B.设有一个线性回归方程
,变量x增加1个单位时,y平均增加5个单位
C.设具有相关关系的两个变量x,y的相关系数为r,则
越接近于0,x和y之间的线性相关程度越强
D.在一个
列联表中,由计算得
的值,则
的值越大,判断两个变量间有关联的把握就越大
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
(
)的焦距为2,椭圆
的左右焦点分别为![]()
,过右焦点
作
轴的垂线交椭圆于![]()
两点,
.
(1)求椭圆
的方程;
(2)过右焦点
作直线交椭圆于![]()
两点,若△
的内切圆的面积为
,求△
的面积;
(3)已知
,
为圆上一点(
在
轴右侧),过
作圆的切线交椭圆
于![]()
两点,试问△
的周长是否为一定值?若是,求出该定值,若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】等腰直角△
内接于抛物线
(
),其中
为抛物线的顶点,
,△
的面积是16.
(1)求抛物线
的方程;
(2)抛物线
的焦点为
,过
的直线交抛物线于![]()
两点,交
轴于点
,若
,
,证明:
是一个定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W,给出下列四个结论:
①曲线W关于原点对称;
②曲线W关于直线y=x对称;
③曲线W与x轴非负半轴,y轴非负半轴围成的封闭图形的面积小于
;
④曲线W上的点到原点距离的最小值为![]()
其中,所有正确结论的序号是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com