科目: 来源: 题型:
【题目】已知,椭圆C过点
,两个焦点为
,
,E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,直线EF的斜率为
,直线l与椭圆C相切于点A,斜率为
.
求椭圆C的方程;
求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,双曲线
:
经过点
,其中一条近线的方程为
,椭圆
:
与双曲线
有相同的焦点
椭圆
的左焦点,左顶点和上顶点分别为F,A,B,且点F到直线AB的距离为
.
求双曲线
的方程;
求椭圆
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆C过点M(0,-2)、N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
平面
,
,
,
是棱
上的一点.
(1)证明:
平面
;
(2)若
平面
,求
的值;
(3)在(2)的条件下,三棱锥
的体积是18,求
点到平面
的距离.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=lnx+
﹣1,a∈R.
(1)当a>0时,若函数f(x)在区间[1,3]上的最小值为
,求a的值;
(2)讨论函数g(x)=f′(x)﹣
零点的个数.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知以椭圆C:
(a>b>0)的两焦点与短轴的一个端点为顶点的三角形为等腰直角三角形,直线x+y+1=0与以椭圆C的右焦点为圆心,椭圆的长半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)矩形ABCD的两顶点C、D在直线y=x+2上,A、B在椭圆C上,若矩形ABCD的周长为
,求直线AB的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点点N在线段AD上.
(1)点N为线段AD的中点时,求证:直线PA∥面BMN;
(2)若直线MN与平面PBC所成角的正弦值为
,求二面角C﹣BM﹣N所成角θ的余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com