【题目】已知,椭圆C过点
,两个焦点为
,
,E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,直线EF的斜率为
,直线l与椭圆C相切于点A,斜率为
.
求椭圆C的方程;
求
的值.
【答案】(1)
;(2)0.
【解析】
可设椭圆C的方程为
,由题意可得
,由椭圆的定义计算可得
,进而得到b,即可得到所求椭圆方程;
设直线AE:
,代入椭圆方程,运用韦达定理可得E的坐标,由题意可将k换为
,可得F的坐标,由直线的斜率公式计算可得直线EF的斜率,设出直线l的方程,联立椭圆方程,运用直线和椭圆相切的条件:判别式为0,可得直线l的斜率,进而得到所求斜率之和.
解:
由题意可设椭圆C的方程为
,
且
,
,
即有
,
,
所以椭圆的方程为
;
设直线AE:
,代入椭圆方程可得
,
可得
,即有
,
,
由直线AE的斜率与AF的斜率互为相反数,可将k换为
,
可得
,
,
则直线EF的斜率为
,
设直线l的方程为
,代入椭圆方程可得:
,
由直线l与椭圆C相切,可得
,
化简可得
,解得
,
则
.
科目:高中数学 来源: 题型:
【题目】已知数列
满足
是数列
的前
项的和.
(1)求数列
的通项公式;
(2)若
成等差数列,
,18,
成等比数列,求正整数
的值;
(3)是否存在
,使得
为数列
中的项?若存在,求出所有满足条件的
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:
每周累积户外暴露时间(单位:小时) |
|
|
|
| 不少于28小时 |
近视人数 | 21 | 39 | 37 | 2 | 1 |
不近视人数 | 3 | 37 | 52 | 5 | 3 |
(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;
(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?
近视 | 不近视 | |
足够的户外暴露时间 | ||
不足够的户外暴露时间 |
附:![]()
P | 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下四个命题:
①平面MENF⊥平面BDD′B′;
②当且仅当x=
时,四边形MENF的面积最小;
③四边形MENF周长L=f(x),x∈[0,1]是单调函数;
④四棱锥C′﹣MENF的体积V=h(x)为常函数;
以上命题中假命题的序号为( )
![]()
A. ①④B. ②C. ③D. ③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
平面
,
,
,
是棱
上的一点.
(1)证明:
平面
;
(2)若
平面
,求
的值;
(3)在(2)的条件下,三棱锥
的体积是18,求
点到平面
的距离.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:
温度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得:
,
,
,
,
,线性回归模型的残差平方和
,e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用线性回归模型,求y关于x的回归方程
=
x+
(精确到0.1);
(Ⅱ)若用非线性回归模型求得y关于x的回归方程为
=0.06e0.2303x,且相关指数R2=0.9522.
( i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.
( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线
=
x+
的斜率和截距的最小二乘估计为
=![]()
;相关指数R2=
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴为极轴建立极坐标系,曲线
的极坐标为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若曲线
和曲线
有三个公共点,求以这三个公共点为顶点的三角形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列
中,已知
,
为常数.
(1)证明:
成等差数列;
(2)设
,求数列
的前n项和
;
(3)当
时,数列
中是否存在不同的三项
成等比数列,
且
也成等比数列?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com