精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴为极轴建立极坐标系,曲线的极坐标为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线和曲线有三个公共点,求以这三个公共点为顶点的三角形的面积.

【答案】(1) ;(2)4.

【解析】试题分析:1)由消去参数即为曲线的普通方程.由结合互化公式可得曲线的直角坐标方程.

因为曲线和曲线都是关于轴对称的图形它们有三个公共点所以原点是它们的其中一个公共点所以得三个交点的坐标分别为 即可得到以这三个公共点为顶点的三角形的面积.

试题解析:1)由消去参数即为曲线的普通方程.

结合互化公式得即为曲线的直角坐标方程.

2)因为曲线和曲线都是关于轴对称的图形它们有三个公共点所以原点是它们的其中一个公共点所以

得三个交点的坐标分别为

所以所求三角形面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,再随机抽取3人赠送礼品,记这3人中“微信控”的人数为试求的分布列和数学期望.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求ab的值;

2)判断函数的单调性,并用定义证明;

3)当时,恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数在点处的切线方程;

(Ⅱ)当时,讨论的单调性;

(Ⅲ)是否存在实数,对任意,且恒成立?

若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数轴左侧的图象,如图所示,并根据图象:

(1)直接写出函数 的增区间;

(2)写出函数 的解析式;

(3)若函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知成等差数列,点在直线上的射影为,点在直线上,则线段长度的最小值是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数.

(Ⅰ) 的值;

(Ⅱ) 若存在,使不等式有解,求实数的取值范围;

(Ⅲ)已知函数满足,且规定,若对任意,不等式恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中, 二面角的大小为.

(1)求证: 平面

(2)求平面与平面所成的角(锐角)的大小;

(3)若的中点,求直线与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,若椭圆上一点满足,且椭圆过点,过点的直线与椭圆交于两点 .

(1)求椭圆的方程;

(2)过点轴的垂线,交椭圆,求证: 三点共线.

查看答案和解析>>

同步练习册答案