精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中, 二面角的大小为.

(1)求证: 平面

(2)求平面与平面所成的角(锐角)的大小;

(3)若的中点,求直线与平面所成的角的大小.

【答案】(1)见解析;(2);(3)

【解析】试题分析:(Ⅰ)由已知可得AC⊥CD,AC⊥CB,即BCD为二面角B﹣AC﹣E的平面角,即BCD=60°,求解三角形可得BDDC,再由线面垂直的判定可得AC平面BCD,得到ACBD,进一步得到BD平面ACDE;

(Ⅱ)由BD平面ACDE,得BD⊥DC,BD⊥DE,可得DB,DC,DE两两垂直,分别以DB,DC,DE所在直线为x,y,z轴建立空间直角坐标系,求出所用点的坐标,得到平面BAE与平面BCD的一个法向量,由两法向量所成角的余弦值可得平面BCD与平面BAE所成的角;

)若F为AB的中点,由(II)可得,进一步得到,由已知可得平面BDE的一个法向量为,由所成角的余弦值的绝对值可得直线EF与平面BDE所成角的大小.

试题解析:

1因为,则

所以为二面角的平面角,即

中,

所以,所以,即

,且,可知平面

平面,所以

又因为 平面 平面

所以平面

2)由平面 ,即 两两垂直,

则以 分别为轴, 轴, 轴的正方向建立空间直角坐标系,如图所示.

由(I)知

依题意

设平面的一个法向量为

,即,不妨设,可得

平面可知平面的一个法向量为

设平面与平面所成的角(锐角)为

所以,于是

所以平面与平面所成的角(锐角)为

3)若的中点,则由(II)可得所以

依题意平面,可知平面的一个法向量为

设直线与平面所成角为,则

,所以直线与平面所成角的大小

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,曲线与正方形 的边界相切.

(1)求的值;

(2)设直线交曲线是否存在这样的曲线使得 成等差数列?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴为极轴建立极坐标系,曲线的极坐标为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线和曲线有三个公共点,求以这三个公共点为顶点的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,直线的参数方程为为参数),曲线的方程为.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.

1)求直线和曲线的极坐标方程;

2)曲线分别交直线和曲线于点的最大值及相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学现有6名包含在内的男志愿者和4名包含在内的女志愿者,这10名志愿者要参加第十三届全运会支援服务工作,从这些人中随机抽取5人参加田赛服务工作,另外5人参加径赛服务工作.

1)求参加田赛服务工作的志愿者中包含但不包含的概率;

(2)设表示参加径赛服务工作的女志愿者人数,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过函数性质的学习,我们知道:函数的图象关于轴成轴对称图形的充要条件是为偶函数”.

1)若为偶函数,且当时,,求的解析式,并求不等式的解集;

2)某数学学习小组针对上述结论进行探究,得到一个真命题:函数的图象关于直线成轴对称图形的充要条件是为偶函数”.若函数的图象关于直线对称,且当时,.

i)求的解析式;

ii)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,已知是边长为2的正方形, 为正三角形, 分别为的中点, .

(1)求证: 平面

(2)求证: 平面

3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM//平面A1DE,则动点M 的轨迹长度为( )

A. B. π C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以平面直角坐标系的原点为极点,正半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.

(1)求直线和曲线的直角坐标方程,并指明曲线的形状;

(2)设直线与曲线交于两点, 为坐标原点,且,求.

查看答案和解析>>

同步练习册答案