相关习题
 0  263514  263522  263528  263532  263538  263540  263544  263550  263552  263558  263564  263568  263570  263574  263580  263582  263588  263592  263594  263598  263600  263604  263606  263608  263609  263610  263612  263613  263614  263616  263618  263622  263624  263628  263630  263634  263640  263642  263648  263652  263654  263658  263664  263670  263672  263678  263682  263684  263690  263694  263700  263708  266669 

科目: 来源: 题型:

【题目】已知为坐标原点,椭圆的左、右焦点分别为.过焦点且垂直于轴的直线与椭圆相交所得的弦长为3,直线与椭圆相切.

(1)求椭圆的标准方程;

(2)是否存在直线与椭圆相交于两点,使得?若存在,求的取值范围;若不存在,请说明理由!

查看答案和解析>>

科目: 来源: 题型:

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示

(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;

甲公司新研制了一款产品,需要采购一批新型材料,现有两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不同,现对两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:

使用寿命/材料类型

1个月

2个月

3个月

4个月

总计

A

20

35

35

10

100

B

10

30

40

20

100

经甲公司测算平均每包新型材料每月可以带来万元收入,不考虑除采购成本之外的其他成本,材料每包的成本为万元, 材料每包的成本为万元.假设每包新型材料的使用寿命都是整月数,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?

参考数据:

参考公式:回归直线方程,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为全面推进新课程改革,在高一年级开设了研究性学习课程,某班学生在一次研究活动课程中,一个小组进行一种验证性实验,已知该种实验每次实验成功的概率为

求该小组做了5次这种实验至少有2次成功的概率.

如果在若干次实验中累计有两次成功就停止实验,否则将继续下次实验,但实验的总次数不超过5次,求该小组所做实验的次数的概率分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若函数处取得极值,不等式恒成立,求实数的取值范围;

3)当时,证明不等式.

查看答案和解析>>

科目: 来源: 题型:

【题目】在五面体中,四边形是正方形,.

(1)求证:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列命题:

用反证法证明命题abc为实数,且,则时,要给出的假设是:abc都不是正数;

若函数处取得极大值,则

用数学归纳法证明,在验证成立时,不等式的左边是

数列的前n项和,则是数列为等比数列的充要条件;

上述命题中,所有正确命题的序号为______

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为坐标原点,椭圆的左、右焦点分别为.过焦点且垂直于轴的直线与椭圆相交所得的弦长为3,直线与椭圆相切.

(1)求椭圆的标准方程;

(2)是否存在直线与椭圆相交于两点,使得?若存在,求的取值范围;若不存在,请说明理由!

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线,点与抛物线的焦点关于原点对称,动点到点的距离与到点的距离之和为4.

(1)求动点的轨迹;

(2)若,设过点的直线的轨迹相交于两点,当的面积最大时,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,三棱锥中,点在以为直径的圆上,平面平面,点在线段上,且,点的重心,点的中点.

(1)求证:平面

(2)求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆,该椭圆经过点,且离心率为.

(1)求椭圆的标准方程;

(2)设是圆上任意一点,由引椭圆的两条切线,当两条切线的斜率都存在时,证明:两条切线斜率的积为定值.

查看答案和解析>>

同步练习册答案