科目: 来源: 题型:
【题目】已知椭圆
:
过点
,且它的焦距是短轴长的
倍.
(1)求椭圆
的方程.
(2)若
,
是椭圆
上的两个动点(
,
两点不关于
轴对称),
为坐标原点,
,
的斜率分别为
,
,问是否存在非零常数
,使当
时,
的面积
为定值?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年春节期间,我国高速公路继续执行“节假日高速免费政策”.某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速收费点处记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如图所示,其中时间段9:20~9:40记作区间
,9:40~10:00记作
,10:00~10:20记作
,10:20~10:40记作
.比方:10点04分,记作时刻64.
![]()
(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,记
为9:20~10:00之间通过的车辆数,求
的分布列与数学期望;
(3)由大数据分析可知,车辆在春节期间每天通过该收费点的时刻
服从正态分布
,其中
可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,
可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
参考数据:若
,则
,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的
平面内,若函数
的图象与
轴围成一个封闭的区域
,将区域
沿
轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域
的面积相等,则此圆柱的体积为__________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
![]()
(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
在左、右焦点分别为
,
,上顶点为点
,若
是面积为
的等边三角形.
(1)求椭圆
的标准方程;
(2)已知
,
是椭圆
上的两点,且
,求使
的面积最大时直线
的方程(
为坐标原点).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
为等腰梯形,
,其中点
在以
为直径的圆上,
,
,
,平面
平面
.
![]()
(1)证明:
平面
.
(2)设点
是线段
(不含端点)上一动点,当三棱锥
的体积为1时,求异面直线
与
所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com