科目: 来源: 题型:
【题目】如图给出的是某高校土木工程系大四年级55名学生期末考试专业成绩的频率分布折线图(连接频率分布直方图中各小长方形上端的中点),其中组距为10,且本次考试中最低分为50分,最高分为100分.根据图中所提供的信息,则下列结论中正确的是( )
![]()
A. 成绩是75分的人数有20人
B. 成绩是100分的人数比成绩是50分的人数多
C. 成绩落在70-90分的人数有35人
D. 成绩落在75-85分的人数有35人
查看答案和解析>>
科目: 来源: 题型:
【题目】已知斜率为1的直线
与椭圆
交于
,
两点,且线段
的中点为
,椭圆
的上顶点为
.
(1)求椭圆
的离心率;
(2)设直线
与椭圆
交于
两点,若直线
与
的斜率之和为2,证明:
过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区
四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:
学校 |
|
|
|
|
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.
(1)若该区共2000名高中学生,估计
学校参与“创城”活动的人数;
(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;
(3)在上表中从
两校没有参与“创城”活动的同学中随机抽取2人,求恰好
两校各有1人没有参与“创城”活动的概率是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
是矩形,
平面
,
,点
、
分别在线段
、
上,且
,其中
,连接
,延长
与
的延长线交于点
,连接
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若
时,求二面角
的正弦值;
(Ⅲ)若直线
与平面
所成角的正弦值为
时,求
值.
查看答案和解析>>
科目: 来源: 题型:
【题目】
从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:
![]()
(I)求这500件产品质量指标值的样本平均值
和样本方差
(同一组的数据用该组区间的中点值作代表);
(II)由直方图可以认为,这种产品的质量指标
服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
(i)利用该正态分布,求
;
(ii)某用户从该企业购买了100件这种产品,记
表示这100件产品中质量指标值位于区间
的产品件数.利用(i)的结果,求
.
附:![]()
若
则
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系
中,直线l的方程为x-y+4=0,曲线C的参数方程为
.
(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的
,男生追星的人数占男生人数的
,女生追星的人数占女生人数的
.若有
的把握认为是否追星和性别有关,则男生至少有( )
参考数据及公式如下:
|
|
|
|
|
|
|
|
![]()
A. 12B. 11C. 10D. 18
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆
,
分别为其左、右焦点,过
的直线与此椭圆相交于
两点,且
的周长为8,椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在平面直角坐标系
中,已知点
与点
,过
的动直线
(不与
轴平行)与椭圆相交于
两点,点
是点
关于
轴的对称点.求证:
(i)
三点共线.
(ii)
.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com