相关习题
 0  263686  263694  263700  263704  263710  263712  263716  263722  263724  263730  263736  263740  263742  263746  263752  263754  263760  263764  263766  263770  263772  263776  263778  263780  263781  263782  263784  263785  263786  263788  263790  263794  263796  263800  263802  263806  263812  263814  263820  263824  263826  263830  263836  263842  263844  263850  263854  263856  263862  263866  263872  263880  266669 

科目: 来源: 题型:

【题目】已知抛物线的焦点为为抛物线上一点,为坐标原点,的外接圆与抛物线的准线相切,且外接圆的周长为.

1)求抛物线的方程;

2)已知点,设不垂直于轴的直线与抛物线交于不同的两点,若,证明直线过定点并写出定点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,①已知点为曲线上任一点,到点的距离和到点的距离的比值为2;②圆经过,且圆心在直线.从①②中任选一个条件.

1)求曲线的方程;

2)若直线被曲线截得弦长为2,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:

品牌

首次出现故

障时间x(年)

0<x≤1

1<x≤2

x>2

0<x≤2

x>2

轿车数量(辆)

2

3

45

5

45

每辆利润

(万元)

1

2

3

1.8

2.9

将频率视为概率,解答下列问题:

(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率.

(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1X2的分布列.

(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数

(1)求函数上的值域

(2)设,若方程有两个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是函数)在区间上的图象,为了得到这个函数的图象,只需将)的图象上的所有的点(  )

A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

B. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

查看答案和解析>>

科目: 来源: 题型:

【题目】以下四个命题中正确的是(

A.空间的任何一个向量都可用其他三个向量表示

B.为空间向量的一组基底,则构成空间向量的另一组基底

C.为直角三角形的充要条件是

D.任何三个不共线的向量都可构成空间向量的一个基底

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C的两个焦点分别为,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.

(1)求椭圆C的方程;

(2)过点M(1,0)的直线与椭圆C相交于AB两点,设点N(3,2),记直线ANBN的斜率分别为k1k2,求证:k1+k2为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按分组,制成频率分布直方图:

1)求的值;

2)记表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”,试估计的概率;

3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为,,求的值,并直接写出的大小关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.

(Ⅰ)求椭圆的离心率及左焦点的坐标;

(Ⅱ)求证:直线与椭圆相切;

(Ⅲ)判断是否为定值,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的极小值;

(Ⅱ)当时,讨论的单调性;

(Ⅲ)若函数在区间上有且只有一个零点,求的取值范围.

查看答案和解析>>

同步练习册答案