科目: 来源: 题型:
【题目】已知函数f(x)=aex图象在x=0处的切线与函数g(x)=lnx图象在x=1处的切线互相平行.
(Ⅰ)求a的值;
(Ⅱ)设直线x=t(t>0)分别与曲线y=f(x)和y=g(x)交于P,Q两点,求证:|PQ|>2.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知位于轴左侧的圆与轴相切于点且被轴分成的两段圆弧长之比为,直线与圆相交于,两点,且以为直径的圆恰好经过坐标原点.
(1)求圆的方程;
(2)求直线的斜率的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在四棱锥中,底面是且边长为的菱形,侧面为正三角形,其所在平面垂直于底面,若为的中点,为的中点.
(1)求证:平面;
(2)求证:;
(3)在棱上是否存在一点,使平面平面,若存在,确定点的位置;若不存在,说明理由
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为,M是椭圆C的上顶点,,F2是椭圆C的焦点,的周长是6.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过动点P(1,t)作直线交椭圆C于A,B两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑中,平面,,且,过点分别作于点,于点,连结,当的面积最大时,__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】某绿色有机水果店中一款有机草莓味道鲜甜,店家每天以每斤元的价格从农场购进适量草莓,然后以每斤元的价格出售,如果当天卖不完,剩下的草莓由果汁厂以每斤元的价格回收.
(1)若水果店一天购进斤草莓,求当天的利润(单位:元)关于当天需求量(单位:斤,)的函数解析式;
(2)水果店记录了天草莓的日需求量(单位:斤),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 14 | 22 | 14 | 16 | 15 | 13 | 6 |
①假设水果店在这天内每天购进斤草莓,求这天的日利润(单位:元)的平均数;
②若水果店一天购进斤草莓,以天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,是异面直线,是,外的一点,则下列结论中正确的是( )
A.过有且只有一条直线与,都垂直B.过有且只有一条直线与,都平行
C.过有且只有一个平面与,都垂直D.过有且只有一个平面与,都平行
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列的前n项和为,对一切,点都在函数的图像上.
(1)证明:当时,;
(2)求数列的通项公式;
(3)设为数列的前n项的积,若不等式对一切成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com