科目: 来源: 题型:
【题目】已知定点
,动点
在
轴上运动,过点
作直线
交
轴于点
,延长
至点
,使
.
点
的轨迹是曲线
.
![]()
(1)求曲线
的方程;
(2)若
,
是曲线
上的两个动点,满足
,证明:直线
过定点;
(3)若直线
与曲线
交于
,
两点,且
,
,求直线
的斜率
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,对于点
,若函数
满足:
,都有
,就称这个函数是点
的“限定函数”.以下函数:①
,②
,③
,④
,其中是原点
的“限定函数”的序号是______.已知点
在函数
的图象上,若函数
是点
的“限定函数”,则
的取值范围是______.
查看答案和解析>>
科目: 来源: 题型:
【题目】设
和
是双曲线
上的两点,线段
的中点为
,直线
不经过坐标原点
.
(1)若直线
和直线
的斜率都存在且分别为
和
,求证:
;
(2)若双曲线的焦点分别为
、
,点
的坐标为
,直线
的斜率为
,求由四点
、
、
、
所围成四边形
的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】教材曾有介绍:圆
上的点
处的切线方程为
。我们将其结论推广:椭圆
上的点
处的切线方程为
,在解本题时可以直接应用。已知,直线
与椭圆
有且只有一个公共点.
![]()
(1)求
的值;
(2)设
为坐标原点,过椭圆
上的两点
、
分别作该椭圆的两条切线
、
,且
与
交于点
。当
变化时,求
面积的最大值;
(3)在(2)的条件下,经过点
作直线
与该椭圆
交于
、
两点,在线段
上存在点
,使
成立,试问:点
是否在直线
上,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
(
)的离心率
,直线
被以椭圆
的短轴为直径的圆截得的弦长为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆于
,
两个不同的点,且
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}满足:
,且an+1
(n=1,2…)集合M={an|
}中的最小元素记为m.
(1)若a1=20,写出m和a10的值:
(2)若m为偶数,证明:集合M的所有元素都是偶数;
(3)证明:当且仅当
时,集合M是有限集.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知A,B,C是抛物线W:y2=4x上的三个点,D是x轴上一点.
(1)当点B是W的顶点,且四边形ABCD为正方形时,求此正方形的面积;
(2)当点B不是W的顶点时,判断四边形ABCD是否可能为正方形,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=lnx﹣x+1.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程:
(2)若非零实数a使得f(x)
ax
ax2
对x∈[1,+∞)恒成立,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥
的底面是菱形,
底面
,
分别是
的中点,
,
,
.
![]()
(I)证明:
;
(II)求直线
与平面
所成角的正弦值;
(III)在
边上是否存在点
,使
与
所成角的余弦值为
,若存在,确定点
位置;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,底面四边形ABCD是矩形,平面DCC1D1⊥平面ABCD.AD=3,CD=DD1=5,∠D1DC=120°,M,N分别是线段AD1,BD的中点.
![]()
(1)求证:MN//平面DCC1D1;
(2)求证:MN⊥平面ADC1;
(3)求三棱锥D1﹣ADC1的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com