相关习题
 0  263972  263980  263986  263990  263996  263998  264002  264008  264010  264016  264022  264026  264028  264032  264038  264040  264046  264050  264052  264056  264058  264062  264064  264066  264067  264068  264070  264071  264072  264074  264076  264080  264082  264086  264088  264092  264098  264100  264106  264110  264112  264116  264122  264128  264130  264136  264140  264142  264148  264152  264158  264166  266669 

科目: 来源: 题型:

【题目】如图,椭圆C的右焦点为F,过点F的直线l与椭圆交于AB两点,直线nx=4与x轴相交于点E,点M在直线n上,且满足BMx轴.

(1)当直线lx轴垂直时,求直线AM的方程;

(2)证明:直线AM经过线段EF的中点.

查看答案和解析>>

科目: 来源: 题型:

【题目】本小题满分12分一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图如图.

1为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,求月收入在段应抽出的人数;

2为了估计该社区3个居民中恰有2个月收入在的概率,采用随机模拟的方法:先由计算器产生0到9之间取整数值的随机数,我们用0,1,2,3,4表示收入在的居民,剩余的数字表示月收入不在的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下:

907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989

据此估计,计算该社区3个居民中恰好有2个月收入在的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】重庆市第八中学校为了解学生喜爱运动是否与性别有关,从全校学生中随机抽取50名学生进行问卷调查,得到如图所示的列联表.

喜爱运动

不喜爱运动

合计

男生

22

8

30

女生

8

12

20

合计

30

20

50

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

1)能否有97.5%以上的把握认为“喜爱运动”与“性别”有关;

2)用分层抽样的方法从被调查的20名女生中抽取5名进行问卷调查,求抽取喜爱运动的女生、不喜爱运动的女生各有多少的人;

3)在(2)抽取的女生中,随机选出2人进行座谈,求至少有1名是喜爱运动的女生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abc,且sinAsinBcosBsin2BcosA=2 sinCcosB.

(1)求tanB的值;

(2)若△ABC的外接圆半径为R,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】《复仇者联盟4:终局之战》是安东尼·罗素和乔·罗素执导的美国科幻电影,改编自美国漫威漫画,自2019424日上映以来票房火爆.某电影院为了解在该影院观看《复仇者联盟4》的观众的年龄构成情况,随机抽取了100名观众的年龄,并分成七组,得到如图所示的频率分布直方图.

1)求这100名观众年龄的平均数(同一组数据用该区间的中点值作代表)、中位数;

2)该电影院拟采用抽奖活动来增加趣味性,观众可以选择是否参与抽奖活动(不参与抽奖活动按原价购票),活动方案如下:每张电影票价格提高10元,同时购买这样电影票的每位观众可获得3次抽奖机会,中奖1次则奖励现金元,中奖2次则奖励现金元,中奖三次则奖励现金元,其中,已知观众每次中奖的概率均为.

①以某观众三次抽奖所获得的奖金总额的数学期望为评判依据,若要使抽奖方案对电影院有利,则最高可定为多少;

②据某时段内的统计,当时该电影院有600名观众选择参加抽奖活动,并且每增加1元,则参加抽奖活动的观众增加100.设该时间段内观影的总人数不变,抽奖活动给电影院带来的利润的期望为,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)当时,讨论极值点的个数;

2)若ab分别为的最大零点和最小零点,当时,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知AB是平面内一条长度为4的线段,P是平面内一动点,P可以与AB重合.PAB不重合时,直线PAPB的斜率之积为

1)建立适当的坐标系,求动点P的轨迹方程;

2)一个矩形的四条边与(1)中的轨迹M均相切,求该矩形面积的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,平面四边形ABCD中,EFADBD中点,ABADCD=2, BD=2 ,∠BDC=90°,将△ABD沿对角线BD折起至△,使平面⊥平面BCD,则四面体中,下列结论不正确是 ( )

A. EF∥平面

B. 异面直线CD所成的角为90°

C. 异面直线EF所成的角为60°

D. 直线与平面BCD所成的角为30°

查看答案和解析>>

科目: 来源: 题型:

【题目】己知函数的零点构成一个公差为的等差数列,把函数的图像沿轴向左平移个单位,得到函数的图像,关于函数,下列说法正确的是(  )

A. 上是增函数

B. 其图像关于对称

C. 函数是奇函数

D. 在区间上的值域为[-2,1]

查看答案和解析>>

科目: 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

同步练习册答案