科目: 来源: 题型:
【题目】如图,椭圆C:
的右焦点为F,过点F的直线l与椭圆交于A、B两点,直线n:x=4与x轴相交于点E,点M在直线n上,且满足BM∥x轴.
![]()
(1)当直线l与x轴垂直时,求直线AM的方程;
(2)证明:直线AM经过线段EF的中点.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分) 一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).
![]()
(1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,求月收入在
(元)段应抽出的人数;
(2)为了估计该社区3个居民中恰有2个月收入在
(元)的概率,采用随机模拟的方法:先由计算器产生0到9之间取整数值的随机数,我们用0,1,2,3,4表示收入在
(元)的居民,剩余的数字表示月收入不在
(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
据此估计,计算该社区3个居民中恰好有2个月收入在
(元)的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】重庆市第八中学校为了解学生喜爱运动是否与性别有关,从全校学生中随机抽取50名学生进行问卷调查,得到如图所示的
列联表.
喜爱运动 | 不喜爱运动 | 合计 | |
男生 | 22 | 8 | 30 |
女生 | 8 | 12 | 20 |
合计 | 30 | 20 | 50 |
附:
,![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)能否有97.5%以上的把握认为“喜爱运动”与“性别”有关;
(2)用分层抽样的方法从被调查的20名女生中抽取5名进行问卷调查,求抽取喜爱运动的女生、不喜爱运动的女生各有多少的人;
(3)在(2)抽取的女生中,随机选出2人进行座谈,求至少有1名是喜爱运动的女生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,内角A、B、C所对的边分别为a、b、c,且sinAsinBcosB+sin2BcosA=2
sinCcosB.
(1)求tanB的值;
(2)若△ABC的外接圆半径为R,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】《复仇者联盟4:终局之战》是安东尼·罗素和乔·罗素执导的美国科幻电影,改编自美国漫威漫画,自2019年4月24日上映以来票房火爆.某电影院为了解在该影院观看《复仇者联盟4》的观众的年龄构成情况,随机抽取了100名观众的年龄,并分成
,
,
,
,
,
,
七组,得到如图所示的频率分布直方图.
![]()
(1)求这100名观众年龄的平均数(同一组数据用该区间的中点值作代表)、中位数;
(2)该电影院拟采用抽奖活动来增加趣味性,观众可以选择是否参与抽奖活动(不参与抽奖活动按原价购票),活动方案如下:每张电影票价格提高10元,同时购买这样电影票的每位观众可获得3次抽奖机会,中奖1次则奖励现金
元,中奖2次则奖励现金
元,中奖三次则奖励现金
元,其中
且
,已知观众每次中奖的概率均为
.
①以某观众三次抽奖所获得的奖金总额的数学期望为评判依据,若要使抽奖方案对电影院有利,则
最高可定为多少;
②据某时段内的统计,当
时该电影院有600名观众选择参加抽奖活动,并且
每增加1元,则参加抽奖活动的观众增加100人.设该时间段内观影的总人数不变,抽奖活动给电影院带来的利润的期望为
,求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知AB是平面内一条长度为4的线段,P是平面内一动点,P可以与A,B重合.当P与A,B不重合时,直线PA与PB的斜率之积为
,
(1)建立适当的坐标系,求动点P的轨迹方程;
(2)一个矩形的四条边与(1)中的轨迹M均相切,求该矩形面积的范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,平面四边形ABCD中,E、F是AD、BD中点,AB=AD=CD=2, BD=2
,∠BDC=90°,将△ABD沿对角线BD折起至△
,使平面
⊥平面BCD,则四面体
中,下列结论不正确是 ( )
![]()
A. EF∥平面![]()
B. 异面直线CD与
所成的角为90°
C. 异面直线EF与
所成的角为60°
D. 直线
与平面BCD所成的角为30°
查看答案和解析>>
科目: 来源: 题型:
【题目】己知函数
的零点构成一个公差为
的等差数列,把函数
的图像沿
轴向左平移
个单位,得到函数
的图像,关于函数
,下列说法正确的是( )
A. 在
上是增函数
B. 其图像关于
对称
C. 函数
是奇函数
D. 在区间
上的值域为[-2,1]
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系
中,曲线
的方程为
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的直角坐标方程;
(2)若
与
有且仅有三个公共点,求
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com