科目: 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目: 来源: 题型:
【题目】设min{m,n}表示m,n二者中较小的一个,已知函数f(x)=x2+8x+14,g(x)=
(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,则a的最大值为
A.-4B.-3C.-2D.0
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线
的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)设点
,直线
与曲线
交于
两点,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AB=PA=1,AD
,F是PB中点,E为BC上一点.
![]()
(1)求证:AF⊥平面PBC;
(2)当BE为何值时,二面角C﹣PE﹣D为45°.
查看答案和解析>>
科目: 来源: 题型:
【题目】己知椭圆
的离心率为
,
分别是椭圈
的左、右焦点,椭圆
的焦点
到双曲线
渐近线的距离为
.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
两点,以线段
为直径的圆经过点
,且原点
到直线
的距离为
,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】以下三个关于圆锥曲线的命题:
①设
,
为两个定点,
为非零常数,若
,则动点
的轨迹为双曲线;
②方程
的两根可分别作为椭圆和双曲线的离心率;
③双曲线
与椭圆
有相同的焦点.
其中真命题的序号为_____(写出所有真命题的序号).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com