科目: 来源: 题型:
【题目】已知圆
的圆心为
,点
是圆
上的动点,点
,线段
的垂直平分线交
于
点.
(1)求点
的轨迹
的方程;
(2)过点
作斜率不为0的直线
与(1)中的轨迹
交于
,
两点,点
关于
轴的对称点为
,连接
交
轴于点
,求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】某调研机构,对本地
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,结果显示,有
人为“低碳族”,该
人的年龄情况对应的频率分布直方图如图.
![]()
(1)根据频率分布直方图,估计这
名“低碳族”年龄的平均值,中位数;
(2)若在“低碳族”且年龄在
、
的两组人群中,用分层抽样的方法抽取
人,试估算每个年龄段应各抽取多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:
编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
数量 | 37 | 104 | 147 | 196 | 216 |
(1)若私家车的数量
与年份编号
满足线性相关关系,求
关于
的线性回归方程,并预测2020年该小区的私家车数量;
(2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年己登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:
![]()
(i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;
(ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)
参考公式及数据:对于一组数据
,其回归方程
的斜率和截距的最小二乘估计分别为:
;
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
为参数),以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,点
是曲线
上的动点,点
在
的延长线上,且
,点
的轨迹为
.
(1)求直线
及曲线
的极坐标方程;
(2)若射线
与直线
交于点
,与曲线
交于点
(与原点不重合),求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】阿波罗尼斯(约公元前
年)证明过这样一个命题:平面内到两定点距离之比为常数
的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点
、
间的距离为
,动点
满足
,则
的最小值为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )
A.若
的观测值为6.635,我们有
的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.从独立性检验可知有
的把握认为吸烟与患肺病有关系时,我们就说某人吸烟,那么他有
的可能患有肺病
C.若从统计量中求出有
的把握认为吸烟与患肺病有关系,是指有
的可能性使得推断出现错误
D.以上三种说法都不正确
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是某超市一年中各月份的收入与支出
单位:万元
情况的条形统计图
已知利润为收入与支出的差,即利润
收入一支出,则下列说法正确的是
![]()
![]()
A. 利润最高的月份是2月份,且2月份的利润为40万元
B. 利润最低的月份是5月份,且5月份的利润为10万元
C. 收入最少的月份的利润也最少
D. 收入最少的月份的支出也最少
查看答案和解析>>
科目: 来源: 题型:
【题目】在矩形
中,
,
,
、
、
、
分别为矩形四条边的中点,以
,
所在直线分别为
,
轴建立直角坐标系(如图所示).若
、
分别在线段
、
上.且
.
![]()
(Ⅰ)求证:直线
与
的交点
总在椭圆
:
上;
(Ⅱ)若
、
为曲线
上两点,且直线
与直线
的斜率之积为
,求证:直线
过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥P-ABCD中,侧面
底面ABCD,
,底面ABCD是直角梯形,
![]()
![]()
.
![]()
(1)求证:
平面PBD:
(2)设E为侧棱PC上异于端点的一点,
,试确定
的值,使得二面角E-BD-P的余弦值为
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com