科目: 来源: 题型:
【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,则平面PQC与平面DCQ的位置关系为( )
A. 平行 B. 垂直
C. 相交但不垂直 D. 位置关系不确定
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角梯形中,,,、分别是、的中点,将三角形沿折起,则下列说法正确的是______________.
(1)不论折至何位置(不在平面内),都有平面;
(2)不论折至何位置,都有;
(3)不论折至何位置(不在平面内),都有;
(4)在折起过程中,一定存在某个位置,使.
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列满足,其中,且, 为常数.
(1)若是等差数列,且公差,求的值;
(2)若,且存在,使得对任意的都成立,求的最小值;
(3)若,且数列不是常数列,如果存在正整数,使得对任意的均成立. 求所有满足条件的数列中的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为,且过点,若点在椭圆C上,则点称为点M的一个“椭点”.
(1)求椭圆C的标准方程;
(2)若直线与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足(为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;
(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆()的一个焦点与抛物线的焦点重合,截抛物线的准线所得弦长为1.
(1)求椭圆的方程;
(2)如图所示,,,是椭圆的顶点,是椭圆上除顶点外的任意一点,直线交轴于点,直线交于点,设的斜率为,的斜率为.证明:为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于两个定义域相同的函数、,若存在实数、使,则称函数是由“基函数、”生成的.
(1)和生成一个偶函数,求的值;
(2)若由,(且)生成,求的取值范围;
(3)试利用“基函数,”生成一个函数,使满足下列条件:①是偶函数;②有最小值1,请求出函数的解析式并进一步研究该函数的单调性(无需证明).
查看答案和解析>>
科目: 来源: 题型:
【题目】双曲线与椭圆有相同的焦点,直线为双曲线的一条渐近线.
(1)求双曲线的方程;
(2)过点的直线交双曲线于、两点,交轴于点(点与的顶点不重合),当,且,求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com