【题目】对于两个定义域相同的函数、,若存在实数、使,则称函数是由“基函数、”生成的.
(1)和生成一个偶函数,求的值;
(2)若由,(且)生成,求的取值范围;
(3)试利用“基函数,”生成一个函数,使满足下列条件:①是偶函数;②有最小值1,请求出函数的解析式并进一步研究该函数的单调性(无需证明).
【答案】(1)0;(2);(3),在递减,在递增
【解析】
(1)由列方程,根据为偶函数求得的关系式,进而求得的值.
(2)由列方程组,化简后求得的关系式,利用导数求得的取值范围.
(3)构造函数,并证得其奇偶性和单调性.
(1)由为偶函数可知,所以.
(2)由得,所以,由于,所以可化简得,所以.构造函数,,所以函数在上递增,在上递减,所以函数在处,有极大值,在处有极小值.所以的取值范围是.
(3)构造函数,,所以为偶函数.由于,所以有最小值符合题意.在递减,在递增.
另补证明:由于为偶函数,只需求得上的单调性.构造函数,,由于时,,故,所以函数在上递增.根据复合函数单调性同增异减可知,函数在上递增.根据为偶函数可知,函数在递减.
科目:高中数学 来源: 题型:
【题目】已知是圆锥的高,是圆锥底面的直径,是底面圆周上一点,是的中点,平面和平面将圆锥截去部分后的几何体如图所示.
(1)求证:平面平面;
(2)若,,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.
参考公式: , .
参考数据: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将数列的前n项和分成两部分,且两部分的项数分别是i,,若两部分的和相等,则称数列的前n项和能够进行等和分割.
若,,试写出数列的前4项和的所有等和分割;
求证:等差数列的前项和能够进行等和分割;
若数列的通项公式为:,且数列的前n项和能进行等和分割,求所有满足条件的n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列满足,其中,且, 为常数.
(1)若是等差数列,且公差,求的值;
(2)若,且存在,使得对任意的都成立,求的最小值;
(3)若,且数列不是常数列,如果存在正整数,使得对任意的均成立. 求所有满足条件的数列中的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点恰好是椭圆的右焦点.
(1)求实数的值及抛物线的准线方程;
(2)过点任作两条互相垂直的直线分别交抛物线于、和、点,求两条弦的弦长之和的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com