科目: 来源: 题型:
【题目】若椭圆C1:
和椭圆C2:
的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;
②
;
③
;
④a1-a2<b1-b2.
其中,所有正确结论的序号是( )
A. ②③④ B. ①③④
C. ①②④ D. ①②③
查看答案和解析>>
科目: 来源: 题型:
【题目】下面几种推理中是演绎推理的为( )
A. 由金、银、铜、铁可导电,猜想:金属都可导电
B. 猜想数列
的通项公式为![]()
C. 半径为
的圆的面积
,则单位圆的面积![]()
D. 由平面直角坐标系中圆的方程为
,推测空间直角坐标系中球的方程为![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻的2组数据的概率.
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y关于x的线性回归方程
.
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
查看答案和解析>>
科目: 来源: 题型:
【题目】设n为正整数,集合A=
.对于集合A中的任意元素
和
,记
M(
)=
.
(Ⅰ)当n=3时,若
,
,求M(
)和M(
)的值;
(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素
,当
相同时,M(
)是奇数;当
不同时,M(
)是偶数.求集合B中元素个数的最大值;
(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素
,
M(
)=0.写出一个集合B,使其元素个数最多,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校进行社会实践,对
岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在
岁,
岁年龄段人数中,“时尚族”人数分别占本组人数的
、
.
(1)求
岁与
岁年龄段“时尚族”的人数;
(2)从
岁和
岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在
岁内的概率。
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆
经过
为坐标原点,线段
的中点在圆
上.
(1)求
的方程;
(2)直线
不过曲线
的右焦点
,与
交于
两点,且
与圆
相切,切点在第一象限,
的周长是否为定值?并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在三棱锥
中,底面
是边长为 2 的正三角形,顶点
在底面
上的射影为
的中心,若
为
的中点,且直线
与底面
所成角的正切值为
,则三棱锥
外接球的表面积为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
为定义在实数集
上的函数,把方程
称为函数
的特征方程,特征方程的两个实根
、
(
),称为
的特征根.
(1)讨论函数
的奇偶性,并说明理由;
(2)已知
为给定实数,求
的表达式;
(3)把函数
,
的最大值记作
,最小值记作
,研究函数
,
的单调性,令
,若
恒成立,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知实数
,
,对于定义在
上的函数
,有下述命题:
①“
是奇函数”的充要条件是“函数
的图像关于点
对称”;
②“
是偶函数”的充要条件是“函数
的图像关于直线
对称”;
③“
是
的一个周期”的充要条件是“对任意的
,都有
”;
④“函数
与
的图像关于
轴对称”的充要条件是“
”
其中正确命题的序号是( )
A.①②B.②③C.①④D.③④
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
的定义域为
,同时满足:对任意
,总有
,对定义域内的
,若满足
,恒有
成立,则函数
称为“
函数”.
(1)判断函数
在区间
上是否为“
函数”,并说明理由;
(2)当
为“
函数”时,求
的最大值和最小值;
(3)已知
为“
函数”:
①证明:
;
②证明:对一切
,都有![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com